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Chapter 1

INTRODUCTION

The Kansas Event Data System (KEDS) is a system for the machine coding of
international event data based on pattern recognition. It is designed to work
with short news summaries such as those found in the lead sentences of wire
service reports or in chronologies. To date, KEDS has primarily been used
to code WEIS events (McClelland 1976) from the Reuters news service but in
principle it can be used for other event coding schemes.

Historically, event data have usually been hand-coded by legions of bored un-
dergraduates flipping through copies of the New York Times. Machine coding
provides two advantages over these traditional methods:

• Coding can be done more quickly by machine than by hand; in particular
the coding of a large machine-readable data set by a single researcher is
feasible;

• Machine coding rules are applied with complete consistency and are not
subject to inter-coder disparities caused by fatigue, differing interpreta-
tions of the coding rules or biases concerning the texts being coded;

The disadvantage of machine coding is that it cannot deal with sentences having
a complex syntax and it deals with sentences in isolation rather than in context.

KEDS can be used for either machine-assisted coding or fully automated coding.
Coded events can be manually edited on the screen before they are written to a
file, and the program has a “complexity detector” that can divert linguistically
complex sentences – for example those containing a large number of verbs or
subordinate clauses – to a separate file for later human coding.

This documentation assumes a basic familiarity with event data coding and is
primarily a guide to the use of the KEDS program rather than as an introduction

1



CHAPTER 1. INTRODUCTION 2

to developing an event data coding scheme. The documentation also assumes
familiarity with the basic operations of the Macintosh operating system.

1.1 How KEDS Works

KEDS uses a system of pattern recognition to do its coding. Three types of
information are used:

Actors: These are proper nouns that identify the political actors recognized
by the system;

Verbs: Because event data categories are primarily distinguished by the ac-
tions that one actor takes toward another, the verb is usually the most
important part of a sentence in determining the event code.

Phrases: Phrases are used to distinguish different meanings of a verb – for
example PROMISED TO SEND TROOPS versus PROMISED TO CON-
SIDER PROPOSAL – and to provide syntactic information on the location
of the source and target within the sentence.

KEDS relies on sparse parsing of sentences – primarily identifying proper nouns
(which may be compound), verbs and direct objects within a verb phrase rather
than using full syntactical analysis. As a consequence KEDS will make errors on
complex sentences or sentences using unusual grammatical constructions, but it
requires less information to deal with the sentence structures most commonly
encountered in news articles. By foregoing the use of a full parser, KEDS is
quite robust in correctly interpreting the types of English sentences found in
newswire reports.

1.2 Advantages of machine coding

We originally became involved with machine coding because it is dramatically
faster and less expensive than human coding. Once a researcher has established
vocabulary lists of actors and verb phrases, the only cost involved in generating
event data is the acquisition of machine-readable news reports. (These are
increasingly available from CD-ROM and electronic networks.) Furthermore,
a coding system developed at one institution can be used by other researchers
through the sharing of vocabulary lists and coding software; this has been part of
our collaboration with the PANDA project (see below). The ability to modify
the coding system quickly is essential in policy applications, since decision-
makers must often deal with situations that may not have been addressed earlier
by academic researchers.
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In working with KEDS, we discovered two additional advantages to machine
coding. First, it is free of non-reproducible coding biases. Human coding is
subject to systematic biases because of assumptions made by the coders. For
example, Laurance (1990) notes that even expert coders at the U.S. Naval Post-
graduate School tended to over-estimate the military capability of China because
they knew China to be a large Communist country. Because most human event
coding is done part-time by students, coder biases are difficult to control. In
contrast, in machine-coding the words describing an activity will receive the
same code irrespective of the actors or time period involved. Sparse parsing
also tends to make random coding errors that a statistical analysis can rec-
tify; the systematic errors introduced by human coders are much more difficult
to correct. Any biases embedded in the machine coding system are preserved
explicitly in its vocabulary; there is no such record in human coding.

Second, it is much easier to experiment with alternative coding rules using
machine coding. The COPDAB (Azar 1982) and WEIS (McClelland 1976)
event coding schemes are very general and for the most part presuppose a Cold
War, Westphalian-Clausewitzian conflict framework. This weakens the value of
WEIS and COPDAB data when dealing with post-Cold War phenomena such
as ethnic conflict, low-intensity conflict, and multilateral intervention. Using
a machine-coding system, even a very large data collection such as our Arab-
Israeli conflict data set (100,000 events) can be completely recoded in a couple
hours. This is impossible with human coded data, which has severely restricted
experimentation with new coding schemes.

1.3 History

The development of KEDS began around 1990 as part of the National Science
Foundation’s “Data Development in International Relations” project (Merritt,
Muncaster and Zinnes 1994). While the DDIR work included some experimenta-
tion with German-language sources and foreign policy chronologies (Gerner et al
1994), most of our experimentation at Kansas with the English-language KEDS
has been done with 3-digit WEIS codes on interactions reported by Reuters in
the Middle East. We are currently maintaining an event data set covering the
Levant and Gulf areas of the Middle East that covers 1979 to the present; the
data set contains over 100,000 events.

The other major project using the KEDS program is the Protocol for the As-
sessment of Nonviolent Direct Action (PANDA) at the Program on Nonviolent
Sanctions in Conflict and Defense at the Center for International Affairs at
Harvard (Bond, Bennett, and Vogele 1994). This project uses KEDS to code
a superset of the WEIS categories (160 categories versus the 63 categories in
WEIS) that provide far more detail on nonviolent events, substate actors and
internal interactions such as strikes and protests. PANDA codes several contex-
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tual variables in addition to the standard date-source-event-target variables of
event data. Reuters reports dealing with the entire world have been coded for
1985-1994; the resulting data set contains about 500,000 events.

In addition to these large projects, several additional KEDS dictionaries have
been developed by graduate students. These include

• Behavioral Correlates of War (BCOW; Leng, 1987) coding system of the
Middle East (Jon Pevehouse)

• WEIS coding for West Africa, using full-story coding (Phillip Huxtable)

The version of KEDS described in this manual has almost all of the features
that we anticipate will be in KEDS 1.0.

1.4 System Accuracy

The accuracy of KEDS depends heavily on the source text, the event coding
scheme and the type of event being coded. We have done a variety of different
reliability checks in recent papers and articles (Gerner et al 1992, Schrodt et al
1992, Schrodt and Gerner 1993,1994 , Schrodt 1993). These papers are available
on the KEDS web site, or feel free to contact us for copies.

With Reuters lead sentences and the WEIS coding scheme, KEDS’s will assign
the same code as a single human coder in about 80% to 90% of the cases.
Approximately 10% of the Reuters leads have a syntactic structure that is too
complicated or too idiosyncratic for KEDS to handle properly, although some
of the residual coding disagreement comes from ambiguities in the WEIS coding
categories themselves.1 In an experiment where dictionaries were optimized for
the coding of a single day of Reuters leads, the PANDA project – using a coding
scheme substantially more detailed than WEIS – achieved a 91.7% machine
coding accuracy; this probably represents the upper limit of accuracy for Reuters
leads and a program using KEDS’s sparse parsing approach (Bond, Bennett &
Vogele 1994:9). This level of coding accuracy is comparable to that achieved in
event data projects using human coders: Burgess and Lawton (1972:58) report
a mean intercoder reliability of 82% for eight projects where that statistic is
known.2

1Examples of sentences that are too complex to code include the following:
The United States on Friday dismissed Israel’s apparent rejection of an

Egyptian plan for talks with the Palestinians as ‘parliamentary maneuvering’

and said the door was not closed to peace.

Resumption of ties between Egypt and Syria may spur reconciliation between Iraq

and Syria, and Syria and the PLO, the Qatari newspaper al-Raya said on Friday.
2KEDS had a somewhat lower agreement when compared to multiple human coders. In

many cases this was not because KEDS was coding poorly but because KEDS was more
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Schrodt and Gerner (1993, 1994) assess the face validity of KEDS-generated
data for the Middle East, 1982-1993; the time series produced by the program
correspond closely to the patterns expected from narrative accounts of the inter-
actions between the actors. In these papers, the KEDS data were also compared
to the human-coded WEIS data set for 1982-1991. For almost all dyads, there
was a statistically significant correlation between the number of events reported
by the two series, as well as the number of cooperative events. On the net
cooperation values aggregated using the Goldstein (1992) scale and number of
conflictual events there was a statistically significant correlation in about half of
the dyads. Many of the differences between the two series appear to be due to
the higher density of events in KEDS compared to the New York Times-based
WEIS: the Reuters series contained, on average, three times as many events as
WEIS. The KEDS and WEIS data sets were also used in two statistical stud-
ies - one involving cross-correlation and the other spectral analysis - produced
generally comparable results, although some idiosyncratic differences are found
in specific dyads.

Other work in automated text processing of reports of political events (ARPA
1993; Linert and Sondheim 1991) indicates that dictionaries on the order of
about 5,000 words are necessary for relatively complete discrimination between
political events described by news media sources. The dictionaries used in these
validity studies were somewhat smaller than this and the accuracy with our
current dictionary – about 4000 phrases - may be somewhat higher.

1.5 The KEDS Web Site

The KEDS project maintains a web site at the URL

http://www.ukans.edu/~ keds

At this site you will find the most recent versions of the software and this manual,
assorted dictionaries, data sets and utility programs, a FAQ (frequently-asked-
questions) section, and copies of papers from the project.

1.6 The KEDS.Sample Demonstration

If you received a copy of this manual via a disk or set of files containing a
Sample folder, that folder contains a set of hypothetical events that demonstrate
a number of the features of the program.3 Start the KEDS program by double-
clicking the KEDS program icon. An introductory screen will be displayed,

consistent and less likely to miss multiple events in a single story than some of the human
coders (Gerner et al. 1992, Schrodt, et al. 1992).

3The Sample f folder can be downloaded from the web site.
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followed by a dialog box asking for the coder ID. Enter any text (e.g. your
initials) in response to this, then click OK.

The next dialog box asks whether you want to use an existing coding file or
initialize a new file. Click the Use Existing Project

File button: this will present a standard Macintosh file selection dialog. Double-
click the Sample folder to open it, then double-click the KEDS.Sample file.

After reading the dictionary information, the program will begin coding the first
record in the file.4

The demonstration sentences in Sample.Text illustrate a number of features of
the KEDS system; use the <Return> key or the arrow in the lower right corner
of the screen to advance through the text. The text of the events uses the syntax
and vocabulary typical of Reuters newswire lead sentences.

1.7 System Requirements

We have used KEDS in a variety of Macintosh configurations, including an SE,
SE/30, original II, II with a DayStar Turbo 30 accelerator, IIsi, IIsi with a
DayStar Turbo 40 accelerator, Quadra 900, LC, Powerbook 160, Powerbook
520c, and Power Macintosh 5400 and 7100; we’ve also used it under Systems
6.0.5, 6.0.7, 7.1, 7.5 and 8.0. The suggested application memory size is set at
2048K so KEDS should run on Macs with 4Mb or more of memory under System
6, or 8Mb under System 7.5

KEDS uses the following display fonts: Monaco (9 and 12 pt), Geneva (10 and
12 point) and Helvetica (10, 12, 14 and 24 point; the latter two fonts are used
only in the introductory screen).

1.8 Legal Stuff

Under the Bayh-Dole Act governing technology developed with National Sci-
ence Foundation funding, the KEDS program is the intellectual property of the
University of Kansas. You may use and make copies of the program for edu-
cational, government and non-profit use without charge; the program can be
posted to bulletin boards and included in software collections provided that a

4KEDS can also be launched by double-clicking the icon for the KEDS.Sample file: in this
case the file selectrion step will be bypassed.

5The 2Mb requirement is actually quite conservative in order to allow for memory-intensive
operations such as indexing. If you are low on memory, the program will probably run safely
with about 1.4Mb of memory; the minimum required memory can be changed in the “Get
Info” box of the program.
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copy of this manual is included. If you wish to license the program or its source
code for commercial applications, please contact the Technology Transfer Of-
fice, Office of Research, Graduate Studies and Public Service, Research Support
and Grants Administration, University of Kansas, Lawrence, Kansas (phone:
785-864-3302; fax: 785-864-5272).

THE KANSAS EVENT DATA SYSTEM (KEDS) COMES WITH NO WAR-
RANTIES, EXPRESSED OR IMPLIED. Philip A. Schrodt and the University
of Kansas do not warrant that the software is free of bugs or omissions, and
they make no representations, expressed or implied, with respect to this soft-
ware, its fitness for a particular purpose, or warrant that the functions contained
in the program will meet your requirements or that the operation of the pro-
gram will be uninterrupted or error free (quite the contrary...). In addition to
the foregoing, you should recognize that all complex software systems and their
documentation contain errors and omissions (see below); Philip A. Schrodt and
the University of Kansas shall not be responsible under any circumstances for
providing information or corrections to errors or omissions discovered at any
time in the product, whether or not they are aware of the errors or omissions.
Philip A. Schrodt and the University of Kansas does not recommend the use
of the software for applications in which errors or omissions could threaten life,
injury or significant loss, including the failure to complete research projects.

1.8.1 Because you are undoubtedly wondering...

The term KEDS is an acronym for “Kansas Event Data System.” The soft-
ware is in no way connected to – nor could it possibly be confused with – a
trademarked brand of footwear with a similar name.

1.9 Typeface conventions used in this manual

Menu options, dialog button labels and keys are in Helvetica bold. The path
to an option within a menu is shown using slashes, e.g.

DISPLAY/Status/Project

File types begin with a period and are in italics, e.g. .Verbs, .Actors, .events.
Input files begin with an upper-case letter; output files with a lower case letter.
The output file suffixes are assigned by KEDS; the input file suffixes are the
ones we’ve used in our project.

Chapters and sections of the manual are in Helvetica plain.

Commands are in bold
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Input text is in Courier plain

KEDS output is in Small Caps

� represents a blank

1.10 Definitions

Source refers to the actor in an event data record who initiated at action; in
some event data discussion this is called the “actor”

Target refers to the actor in an event data record who is the object of an action

Case-sensitive means that the program differentiates between upper- and lower-
case letters. In a case-sensitive command, the keyword SOURCE will be
recognized but Source and source would not be recognized.

String refers to any set of consecutive characters

Literal means a string that does not contain symbols that are interpreted by
KEDS, for example

*, $, +, %, |, {, }, ~

Token means a string of characters that has a special meaning to KEDS, for
example

*, $, +, %, <VERB>, <TEXT>, ->

x-delimited means a string that is between the characters ‘x.’ For example, in
the sentence

President Clinton, arriving in Dublin, said that US policy...

the phrase “arriving in Dublin” is comma-delimited. In the class defi-
nition

<tobe> �=�IS �WAS �WERE �WILL BE �
the strings “IS ,” “WAS ,” “WERE ,” and “WILL BE ” are space-delimited.

ASCII stands for American Standard Code for Information Interchange; it is
the standard code through which characters are stored in a computer and
in files. For example, A is represented by the number 65; a blank is the
number 32 and so forth.
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Macintosh TEXT file means a file that contains only characters, without ad-
ditional formatting information. Virtually all word processing programs
will read and write a TEXT file; if you are creating a new file, use the
word processor’s Save As...Text Only option for any files that will be read
by KEDS. These files are occasionally called flat ASCII.6 Macintoshes
running System 7.0 can also directly read the TEXT files produced by
programs running in more primitive operating systems such as Windows
and DOS; Macs running System 6.0 and earlier can do this using the Apple
File Transfer program.

Phase refers to a set of words and tokens in the .Verbs, .Actors, .Classes or
.Options files.

Clause refers to an element of a text sentence that is delimited by either con-
junctions or commas.7

A default is the value that a parameter will have unless it is changed by a
command or menu option.

1.11 Bugs and Extensions

PLEASE REPORT BUGS! This is beta-ware; it is supposed to have bugs and it
will not disappoint you in that regard. Versions since 0.6 seem to be fairly stable
and have been used extensively by the PANDA project and several graduate
students, but it may still contain a bug that periodically destroys the .Verb
list. Keep extra backups of the .Verb and .Actor files; don’t depend on KEDS’s
backups alone!

KEDS is an on-going project and the dictionaries, in particular, are continually
being updated. If you intend to use the program in an actual research project,
check the web site for the latest copy of our dictionaries and the program, and
a list of other projects that are willing to share their dictionaries.

Note: Bug reports are absolutely vital in the development of a com-
plex program such as KEDS, so don’t be shy! We’ve only been able
to test the program on a small number of hardware configurations
and we’ve done most of our work with the same set of texts and
vocabulary lists. If you find a situation where KEDS crashes, or

6The files are “flat” because they are not structured with formatting information.
7In English grammar, a clause technically is any group of words – a subject and predicate.

Allowing for the implied subject in compound sentences of the form
Arafat arrived in Jordan today and met with King Hussein

most clauses parsed by KEDS probably satisfy this criterion – at least in Reuters leads –
as do all clauses coded by KEDS, but the markers used to delineate the clauses are commas
and conjunctions.
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does not behave as described in the manual, please let us know –
this might be symptomatic of a critical problem in the code or the
documentation.

1.12 Suggested Readings

The annotated bibliography below gives citations to the primary papers from
the KEDS project, as well as some surveys of contemporary event data analysis
and computational methods for processing natural language. The Appendix:
Event Data in International Relations Research at the end of the manual provides
an extensive general survey of event data analysis.

1.12.1 KEDS

Gerner, Deborah J., Philip A. Schrodt, Ronald A. Francisco, and Judith L.
Weddle. 1994. “The Machine Coding of Events from Regional and
International Sources.” International Studies Quarterly 38:91-119.

• Description of the DDIR-sponsored KEDS research; includes tests on
German-language sources and a foreign affairs chronology.

Schrodt, Philip A. and Deborah J. Gerner. 1994. “Validity Assessment of a
Machine-Coded Event Data Set for the Middle East, 1982-1992.”
American Journal of Political Science 38:825-854.

• Statistically compares KEDS data to a human-coded data set covering the
same time period and actors.

Schrodt, Philip A. , Shannon G. Davis and Judith L. Weddle. 1994. “Political
Science: KEDSA Program for the Machine Coding of Event Data.”
Social Science Computer Review 12,3: 561-588.

• General description of KEDS and an extended discussion of some of the
problems encountered coding Reuters.

1.12.2 Event Data

Duffy, Gavin, ed. 1994. International Interactions 20,1-2
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• Special double-issue on event data analysis.

Merritt, Richard L., Robert G. Muncaster, and Dina A. Zinnes, eds. 1994.
Management of International Events: DDIR Phase II. Ann Arbor: University
of Michigan Press.

• Reports from the DDIR projects.

1.12.3 Computational Methods for Interpreting Text

Advanced Research Projects Agency (ARPA). 1993. Proceedings of the Fifth
Message Understanding Conference (MUC-5). Los Altos,CA: Morgan Kauf-
mann.

• Reports from a large-scale ARPA project on developing computer pro-
grams to interpret news reports on terrorism in Latin America; these use
a variety of different techniques.

Pinker, Steven. 1994. The Language Instinct. New York: W. Morrow and Co.

• Excellent non-technical introduction to contemporary linguistics; exten-
sive discussion of the problems of parsing English

Salton, Gerald. 1989. Automatic Text Processing. Reading, Mass: Addison-
Wesley.

• General introduction to the use of computers to process text; covers a
wide variety of methods.
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GENERATING DATA
WITH KEDS

Because both the natural language text input and the event data output of
KEDS are uncommon in the standard statistical data processing environment,
working with KEDS requires a few more steps than, say, pulling variables off the
Euro-Barometer surveys. The figure below shows what is involved in going from
machine-readable text to data that can be analyzed with a statistical program.

Dictionary
Development

Machine-
Readable

Text

Reformatting
Program

KEDS

Aggregation
Program

Statistical
Program
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�
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2.1 STEP 1: Locate and reformat a set of machine-
readable texts

The very first step in doing research with KEDS is finding a source of machine-
readable text. This will usually come from an on-line data service or CD-ROM.1

In all likelihood, the original text will not be in the input format used by KEDS.
For example, the text provided by the Nexis data service that we’ve been using
originally looks like

] ] ]
] LEVEL 1 - 5 OF 914 STORIES
] ] Proprietary to the United Press International 1981
] ] <December> 29, 1981, Tuesday, PM cycle
] ]HEADLINE: World News Summary
] ] BODY:
] Sen. Charles Percy, R-Ill., chairman of the Senate Foreign
]Relations Committee, asked his Israeli hosts to avoid the annexed
]
^
^
]Golan Heights in a helicopter inspection tour today of the tense
]Israeli-<Lebanese>frontier.
]

This needs to be converted to the KEDS input format

811229UPI001
Sen. Charles Percy, R-Ill., chairman of the Senate Foreign
Relations Committee, asked his Israeli hosts to avoid the annexed
Golan Heights in a helicopter inspection tour today of the tense
Israeli-Lebanese frontier.

We’ve developed a number of reformatting programs that remove all of the
irrelevant information found in the Nexis download and reformat the text; these
programs and their source code (in Pascal and C) can be found at the KEDS
web site.

However, unless your original text is in exactly the same format as we found with
NEXIS, you will need to write your own filter or modify one of ours. Because

1In Gerner et al 1994 we discuss our experiments with using a scanner and optical character
recognition (OCR) to generate machine-readable text from printed documents. We had very
mixed results with this but OCR software was relatively primitive at that point and the
technology has apparently improved substantially in recent years.



CHAPTER 2. GENERATING DATA WITH KEDS 14

machine-readable data are usually consistently formatted, this is usually not
very difficult provided you know (or know someone who knows) a programming
language such as BASIC, Pascal or C, but this filter is a necessary step before
you can start using KEDS. If you aren’t able to get a filter/reformatting program
written in a program language, the macro language in Microsoft’s Word program
provides another possibility for reformatting.

2.2 STEP 2: Develop the initial coding dictio-
naries

KEDS uses large dictionaries of proper nouns and verb phrases to code the
actors and events it finds in the source text. If you intend to code political
events, you would probably find it easier to modify the dictionaries that have
been developed by other projects than starting with a new dictionary.2 The
advantage of this approach is that the existing dictionaries have already iden-
tified most of the English vocabulary used in Reuters, so even if you expect to
substantially change the coding scheme, you will know what types of phrases
to expect. The KEDS (WEIS, Middle East) and Pevehouse (BCOW, Mid-
dle East) dictionaries are available from our project and are archived at the
ICPSR; the PANDA dictionaries are available from the PANDA project (con-
tact: dbond@cfia.harvard.edu). All three of these dictionaries were based on
coding Reuters lead sentences. The Actor Filter utility program – available
at the web site – can be useful in identifying new actors that are not already
incorporated into the dictionaries.

2.3 STEP 3: Fine-tune the dictionaries

With the initial dictionaries incorporated into your system, the next step is fine-
tuning “tweaking” the phrases to work correctly with your data and coding
scheme. This is done by going through a large number of texts and modifying
the vocabulary as needed; this process will also give you an indication of the
accuracy of the system. Most vocabulary modifications involve the addition of
specific individual actors (e.g. political leaders; geographical place names) and
the addition of verb phrases describing behaviors specific to the problem you
are considering.

While you are fine-tuning the dictionaries you might also look at some of the
advanced features of KEDS, such as the use of substitution rules, word classes,
the complexity filter, and additional coding features such as issues and con-
tent analysis counts. The grammatical transformation rules may enable you

2The KEDS and PANDA dictionaries are each the result of abut two person-years of coding,
so a substantial amount of effort has already been invested in developing them.
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to develop general solutions to problems that would otherwise require a large
number of specific phrases, and the additional coding features allow information
to be extracted from a sentence beyond the basic source-event-target structure
of event data.

Note: Resist the temptation to tweak the vocabulary indefinitely!
Tweaking should focus on finding general patterns that will occur on
multiple occasions in the text, not on expanding the list of phrases
to cover every possible contingency. Always remember that coding
errors will be only one source of noise in your data: the source
text is already an incomplete and biased record of the underlying
events; the event coding scheme may be incorrectly aggregating some
categories of events; and the statistical models in which the data will
eventually be used in capture only some of the possible forms of the
political relationships.

Even if your coding was somehow “perfect,” you are still dealing
with a noisy process. Successfully identifying relationships amid
that noise comes at the analytical stage of the project – both the
development of the coding scheme and the statistical analysis – not
in the coding stages. Know when the coding accuracy is “good
enough,” and don’t fall into the trap of producing a project that
does beer-budget analysis on champagne-budget data. If you can’t
cope with the fact that probably 15% of your data are erroneously
coded,3 you shouldn’t be doing event data analysis. End of sermon.

2.4 STEP 4: Autocode the entire data set

Unless you intend to use KEDS for machine assisted-coding of your entire
dataset, the data should be autocoded once the accuracy of the dictionaries
has reached a level you are comfortable with. Autocoding will ensure that the
coding rules have been consistently applied across the entire data set, rather
than having the part of the data that was used to develop the dictionaries
coded by hand, and the remainder machine coded. Autocoding also insures
that your coding can be replicated by later researchers, as well as by yourself
at a later date.

If you cannot get the accuracy level of KEDS to an acceptable level, you still
may be able to use the program for routine coding by using KEDS’s complexity
filter. This will automatically – and systematically – divert to a separate file any
texts that appear too complex to machine code (for example texts containing
an excessive number of verbs or actors, or containing ambiguous words such as

3And this is true whether you are using human or machine coding.
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ATTACK or GEORGIA). The complex texts can be processed using machine-
assisted coding, and then the two sets of event data can be merged. Coding with
the complexity filter is not completely replicable – and the complexity filter will
not catch sentences that might be coded incorrectly – but it is more efficient and
replicable than all-human coding, but more accurate than all-machine coding.

2.5 STEP 5: Aggregate the data for statistical
analysis

KEDS produces standard event data of the form

<date><source code><event code>
<target code><auxiliary codes>

Because event data are an irregular, nominal-measure (categorical) time series
they must be aggregated before they can be used by standard statistical pro-
grams such as SPSS and SAS or graphical displays such as spreadsheets; these
all expect a regular, interval-measure (numerical) time series. This transfor-
mation is usually done by mapping each event code to an interval-level scale
(for example, Goldstein 1993), and then aggregating the data by actor-pair and
week, month or year using averages or totals.

It is possible to do this aggregation by scripting the data transformation facil-
ities of a statistical program. However, this process tends to be very slow and
awkward, particularly when dealing with a large number of actor pairs. As an
alternative, we have developed an aggregation program, KEDS Count, to auto-
mate this process; this program and its documentation are on the KEDS disks.
In contrast to the text reformatting programs, which need to be customized,
KEDS Count should handle most situations requiring aggregation of event data
into a time-series.

2.6 Using this manual

The remainder of this manual is divided into two parts, plus some appendices.
Chapters 3 through 12 of the manual deal with the development of coding
dictionaries and various optional features affecting the operation of the program.
Chapters 13 and 14 describe the actual operation of the program, including the
windows, menus and program controls. The appendices cover error messages,
the numerical limitations of program and an extended discussion of event data.

If you are just trying to get started with the program, read through the sections
in Chapters 3 through 12 on Input Files and .Verbs and .Actors Dictionaries, skim
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Chapters 13 and 14 and work through the KEDS.Sample demonstration. You
should also look through the long .Verbs dictionary to get an idea of how KEDS
deals with verbs and verb phrases. Many of the optional features of KEDS – for
example Output Formatting, Issues and Agents – are needed only in specialized
applications and the program works fine without them.
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INPUT FILES

3.1 Purpose

This chapter describes the files used by KEDS. These are:

.Project: The project file contains information about all of the other files used
in the coding, as well as a coding history.

.Text: The source text to be coded.

.Verbs: A file containing a dictionary of the verbs and verb phrases used to
code events.

.Actors: A file containing a dictionary of the nouns used to identify the sources
and targets of events.

.Options: A file containing a variety of commands that modify the behavior
of the KEDS program.

.events: An output file containing the coded event data; this can be formatted
in a variety of ways.

All of the files except for the Project file are in “flat ASCII” format (Macintosh
TEXT-type) and should only be edited using a program that produces a flat
ASCII file (e.g. a file without embedded control codes). The Project file is
maintained by the KEDS program itself and cannot be edited.

In addition to the required files, KEDS also can work with the following addi-
tional files; the details of the files are described later chapters.

Input

18
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.Issues: These files contain character strings used to identify the context of the
text [see chapter on Issues]

.Classes and Rules: This file defines classes of words and transformation rules
used on the text [see chapter on Classes and Rules]

Output

.probs: record of problems encountered in the data. [see chapter on .Options]

.complex: source text that was too complex to machine-code by machine [see
chapter on .Options]

.text: tab-delimited file containing the source text, date and sentence identifi-
cation [see chapter on Formatting Output]

3.2 Project File

KEDS uses a “project file” containing information about the names of the
.Verbs, .Actors, .Options and text files, and the status of the Valid and Pause
When settings. It also tracks up to 64 coding sessions, recording the coder, time
and date, number of phrases examined and the accuracy of the system during
that session. The contents of the project file can be displayed or written to a
text file using the DISPLAY/Status/Project option in the menu.

3.2.1 Initializing a Project

To create a new project file or reset an existing file, click the Initialize new
project file option at the beginning of the program. This option presents a
series of Macintosh file selection dialogs that are used to select – in order – the
text, .Verbs, .Actors and .Options files for the project. The type of the requested
file is shown in the upper left corner of the dialog.1 The files associated with
a project file should all be in the same folder. Clicking Cancel during any of
these dialogs will stop the initialization and quit the program without making
any changes.

After the introductory sequence of file selection dialogs, a file name can be
changed by clicking the label to the left of the box containing the file name:
this will give a standard Macintosh file selection dialog. The name can also be
changed directly by editing, though this is less reliable that using file selection.

1Usually: some Macintosh extensions (INITs) move or enlarge the standard file selection
dialog box, and this may obscure the message indicating that type of file is being requested.
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The Project Name box provides a prefix that is used for the .events and output
files: enter the name in the box provided. Keep the name short (e.g. less than
16 characters) because file suffixes and serial numbers will be appended to it to
create other file names. This prefix also becomes the project name. If a project
already exists with this name, you will get an alert dialog asking for verification
that you want to reset the file.

Note: The text file is actually optional – if you enter a null string as the text
file, the project file will cause the program to prompt you to select a text file each
time it is started. To enter a null file name, first select any text file during the
initialization (hitting Cancel will just quit the program), then click in the text
file name edit box, then hit <Return>. Null text file names are particularly
useful when you want to autocode a number of texts using the same set of
dictionaries.

3.3 Text File

KEDS will process with any TEXT file containing records in the following format

date idinfo any other information
source text line 1
source text line 2 ...
source text line n
blank line

Your filter program should reformat your original text into this form, or you
can edit the original text manually. If you are using a word processor, be sure
to save the file in the TEXT format rather than the normal format of the editor.

date is the date of the sentence being coded and should be 6 digit in the
form YYMMDD and should be in the first six characters; for example
880318=March 18, 1988. See comments below under Date Restricted Codes
for the interpretation of dates that are out of range and dates in the years
2000 to 2010. If the date string is less than 6 characters, it will be set to
140101.

idinfo is the next six (6) characters following the date and can anything used to
identify the source text (including blanks); typically it is a serial number
that uniquely identifies the source text in a specific day. This can also
be used to identify whether records refer to sequential sentences; see the
discussion of the FORWARD command in the .OPTIONS chapter.

text lines should be around 80 characters in length; after filtering punctuation,
any characters in excess of 96 are ignored.2 The source text is limited to

2In other words, the maximum length of a line is 96 characters. However, if a 96-character
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16 lines containing a maximum of 255 words (if the number of words is
greater than 255, the remainder will be ignored) and a maximum of 2560
characters.

blank line is a line containing no characters (in other words, just a <return>),
or containing only blanks.

3.3.1 Utility Programs

In addition to KEDS, our project uses several utility programs for the pre-
processing of source texts and the post-processing of event data. All of these
programs are available at the web site.

NEXIS Filter

Over the years we have developed a series of different filter programs that convert
NEXIS downloads into the appropriate format for processing by KEDS. The
most recent version is written in C and will manage both lead-sentence filtering
and full-story filtering, though only for Reuters stories. The source code as well
as the compiled program is posted at the web site. Earlier versions (with source
code) are available in Pascal, and some of these handle wire sources other than
Reuters.

Managing the source text for a long time series is a major task, and if you are
not familiar with the Macintosh, you might want to do these on a Window or
Unix platform. Because KEDS input and output are both in flat ASCII files,
this is not difficult, and several projects (notably PANDA) have worked with
KEDS in cross-platform environments.

ACTOR FILTER

This program locates potential new actor names in a file of KEDS input records
by looking for strings of consecutive capitalized words and comparing these
against an existing sets of actor names and a list of stop words. The output
of the program is a keyword-in-context (KWIC) file sorted by the frequency of
the actor name. The program basically runs in batch model, controlled by an
optional text file.

We’ve used this program to develop a number of new actor dictionaries for
coding internal events, and we’ve found that it significantly decreases the time

line contained commas that were not surrounded by spaces, filtering would cause it to become
longer than 96 characters and the end of the line would be lost. To be on the safe side, keep
the individual lines around 80 characters.
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required to modify the .Actor files. The KWIC index typically has quite a few
false positives – in particular names that are preceded by distinct descriptive
adjectives – but it is a fast way to figure out who is who in a new set of data.
The program is in beta status, but seems to be stable. The compiled program
is posted in the “Software” section of the web site.

NEXIS VERIFY

This utility program goes through a list of KEDS records and checks the dates
for missing intervals, bad date formats and the like. Date strings are tagged on
any of the following conditions:

1. Date is not in the range 790415 to 970610, the current NEXIS limits on
Reuters

2. Consecutive dates are separated by more than 4 days

3. A date occurs before the date of the previous record.

These conditions can be modified by setting parameters in the source code.
Both the compiled program and the C source code are posted.

Based on long experience with the vagaries of Reuters and NEXIS records,
we strongly recommend running this routine before coding, particularly if you
subsequently intend to aggregate data using KEDS Count.

KEDS Count

This program aggregates event data by time period and dyad. The program
was originally designed to work with output from KEDS but will work with
any tab-delimited event data. The program operates in a “batch” mode by first
reading a “command file” – created using a word processor – that defines the
characteristics of the aggregation. It then reads through the event data files and
produces a tab-limited output file for each dyad. These output files can be read
into a spreadsheet or statistics program.

3.3.2 Automatic Input Filtering

Unless the SET: FILTER INPUT=FALSE option has been set in the .Op-
tions file, the following additional changes are made in the text before it is
processed:
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1. All of the search-and-replace patterns specified by the REPLACE options
are applied.

2. All characters are converted to upper-case and any diacriticals are removed
(i.e. ö becomes O, å becomes A, é becomes E and so forth).3 This step
is always done.

3. Periods following lower-case letters are replaced with blanks; this means
that the punctuation at the end of a sentence is eliminated but periods in
abbreviations (e.g. U.N.) are retained.

4. ‘?’ and ‘!’ are replaced with blanks.

5. Commas inside numbers are eliminated, so “1,500” becomes “1500”.

6. Semicolons (‘;’) are replaced with commas

7. Commas and double-quotes (“) are delimited with blanks, so the sentence

Clinton�responded,�‘‘I don’t know.’’

becomes

Clinton�responded�,�‘‘�I don’t know�’’�
where � represents a blank

All of this filtering is done before the text is entered into the system, so these
changes will be reflected in the text displayed on the screen. Generally KEDS
formats the source text to fit the size of the text window displayed on the screen.
If you want to have a “hard-coded” return in the text, use “�ˆ /�” (note the
spaces before and after “ˆ /”)

If the SET: FILTER INPUT=FALSE option is used, then only [2] is done:
all characters are converted to upper-case and any diacriticals are removed.

Any text between the delimiters /*...*/ will not be coded; this allows irrelevant
material (for example subordinate clauses) to be eliminated from coding and for
comments to be added to the text. Additional sets of delimiters can be specified
using the OMIT command in the .Options file.

Notes: KEDS does nothing with the following punctuation issues:

1. Hyphenated words are the end of a line, for example

...... confronting antidisestab-
lishmentarianism, the government .......

3Prior to Version 0.7, KEDS accommodated diacriticals. These can still be handled by
using the REPLACE option to replace them with a letter combination that does not use
diacriticals (e.g. Ä − > A ) and then using those combinations in patterns.
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These should be combined into single words when filtering the original
text.

2. Any other forms of hyphenation, e.g. “Arab-Israel”, “al-Asad”

3. Apostrophes, e.g. “didn’t”, “Shi’a”

4. The asymmetrical “smart quotes” “ and ” if these occur in your source
text, replace them with a simple double-quote “ using a word processor
or a REPLACE command in the .Options file. The same goes for “smart
apostrophes”.

3.3.3 Coding a number of files

Usually the Text File box contains the name of a single file. There are two
exceptions to this:

If the entry in the Text File box is empty , then every time the project file is
run, the program will present a Macintosh file selection dialog asking for the
name of the file to be coded. This allows a number of files to be coded using
the same set of dictionaries.

If the first line of the file in the Text File box contains the word

AUTOCODE

then the file is assumed to contain a list of file names. For example:

AUTOCODE
LEVANT.89.LEADS
LEVANT.90.LEADS
LEVANT.91.LEADS
LEVANT.92.LEADS
LEVANT.93.LEADS

Each of these files will be autocoded without any pausing or dialogs in the
sequence listed. This allows a large set of files to be coded without supervision
in a “batch” mode. If a file cannot be found, the program presents an alert
dialog to that effect, then terminates.



Chapter 4

.VERBS AND .ACTORS
DICTIONARIES

4.1 Purpose

Most of the coding decisions made by KEDS are based on the dictionaries of
words and phrases in the .Verbs and .Actors files. This chapter describes the
basic features of those dictionaries.

While the dictionary files can be modified using dialog boxes while the program
is running, KEDS is not designed to build those files from nothing: working with
empty .Verbs and .Actors files will have unpredictable results. It is generally
more efficient to initially create or extensively modify the dictionaries with a
word processor rather than building the entire vocabulary using the Modify
menu option inside the program.

In order to work with the dictionaries (as well as the .Options file), you will
need to be able edit files using a word processor or editor that produces flat
ASCII, Macintosh TEXT - type files. Virtually all word processors can do this,
but be sure that at every stage of your processing, the files that KEDS will be
reading have been saved as TEXT rather than in a word processing format. If
a file that was working earlier suddenly starts producing garbage or crashing
the program, it was probably accidentally saved as a formatted document – for
example Microsoft Word will do this if you inadvertently format any part of the
document.

25



CHAPTER 4. .VERBS AND .ACTORS DICTIONARIES 26

4.2 Phrase Input Formats for .Verbs and .Ac-
tors files

The .Verbs and .Actors files use the same format:

PHRASE [CODE ] {; comments}
The last line in the file should be ˜ FINISH; this is the internal end-of-file
mark. Lines after the ˜ FINISH will not be read into the dictionary but will
be copied into the saved file.

Initial and terminal blanks are trimmed from PHRASE . The comments after
the semicolon are optional; this allows the origin of the pattern (e.g. the coder
identification and date) to be documented.

Any line beginning with \ (“backslash”) is a comment and ignored. This can be
used to temporarily eliminate phrases from the dictionaries.

4.2.1 Codes

Codes are less than or equal to 12 characters in length and can contain only
letters and numbers. (i.e. no special characters such as ‘!’, ‘[’, or ‘$’; in particular
avoid the special codes - - -, ***, ### and +++). Although 12 is the maximum
length of a code, most of the default display sizes and the editing boxes in dialogs
are formatted for 6 character codes. The length of a code should to balance the
mnemonic advantages of long codes with the difficulties of using lengthy codes
in complex code constructions and the increased size of the resulting output
files.

4.2.2 Stemming

Stemming can be used to match different forms of the same word using a single
string called a “stem”. For example

ACCEPT: ACCEPTS ACCEPTED ACCEPTING
SYRIA: SYRIA’S SYRIAN SYRIANS

KEDS handles stemming by matching from the beginning of the word. A word
is considered to match a stem provided every character in the stem matches. In
other words, SYRI will match all four forms of SYRIA but it will not match
SYRACUSE.

When phrases have the same initial letters, KEDS checks long phrases before
shorter ones: For example SIGNALLED, SIGNED and SIGN have the
search order:
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SIGNALLED
SIGNED
SIGN

To prevent a character string from being used as a stem, put an underscore ( )
after the string: this means that the string will match only if it is followed by
a space. The phrase OF will only match “OF�” whereas the stem OF would
match “OF”, “OFFER” and “OFFICIAL.”

Considerable effort may be involved in the dictionary tweaking to determine
which stems can be used without causing problems. For example TOUR looks
like a useful stem for TOUR, TOURED and TOURING, but it also matches
TOURIST, which can cause problems. The phrase:

HEAD

- * FOR

correctly handles the verb forms HEADING FOR and HEADED FOR but inconve-
niently also matches HEADQUARTERS FOR. To force an entire word to be used in
a match, end it with an underscore; alternatively, problematic words such as
HEADQUARTERS can be eliminated using null codes (see below).

Note: In our experience, stemming is the most frequent cause of
wildly inaccurate coding errors, and it is not entirely clear that this
feature is worth the trouble. In a recent case, for example, the verb
BEAT – which is generally problem-free – matched BEATY, the
name of an American released by Iraq. A future version of KEDS
may incorporate a facility for designating regular verb constructions
and noun endings (e.g. plurals and adjectival forms) and make stem-
ming optional.

4.3 .Actor Dictionary

The .Actors file contains proper nouns their associated codes. Multiple nouns
can refer to the same code; for example in our system ISR (Israel) corresponds
to ISRAEL, ISRAELI, ARENS, PERES, JERUSALEM, TEL AVIV and SHAMIR.

Example
ABU SHARIF [PLO] ; tony 3/13/91
ACQUINO [PHL]
AL-WAZIR [PAL] ; tony 3/13/91
AMMAN [JOR]
AMNESTY INTERNATIONAL [NGO] ; tony 3/13/91
ANKARA [TUR] ; tony 3/13/91
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ANTIGUA [ATI]
AQUINO [PHL] ; tony 3/13/91
ARAB [ARB]
ARAFAT [PAL]
ARCHBISHOP OF CANTERBURY [PVO] ; tony 4/21/91
ARENS [ISR]

It is occasionally necessary to use two or more spellings for a single actor, partic-
ularly if multiple (or poorly edited) text sources are used, as with ACQUINO and
AQUINO in the example above (to say nothing of QADDIFY, GADDIFY, QADHFI,
KHADAFI...).

See Also: Coded Compound Actors, Date Restricted Codes

4.4 .Verbs Dictionary File

The .Verbs file contains a combination of simple verbs (e.g. PROMISED) and
verbs plus associated words (e.g. PROMISED FUNDS). For example

ACCEPT
- PROPOSAL WAS * [081]
- * FORMULATION [041]
- REFUSED TO * [112]
- * INVITATION [082]
- * PROPOSAL [081]
- * CHARGES [013]

The root verb is ACCEPT and it will match ACCEPT, ACCEPTS, and AC-
CEPTED. The phrases that start with “-” are the associated phrases along with
their codes, e.g.

ACCEPTED PROPOSAL

will be coded 081 (WEIS “agree”) while

REFUSED TO ACCEPT

will be coded 112 (WEIS “reject”). The phrases tend to involve the direct object
of the verb, though this is not always the case. The “*” indicates where the
verb itself should appear, so the first phrase would match

PROPOSAL WAS ACCEPTED

If a verb by itself uniquely identifies a code – which is commonly the case for
WEIS – it is on a line by itself along with the code. A verb can also have a
default code followed by exception phrases:
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AGREE [081]
- * TO LET ESCAPE [066]
- * LOAN [071]
- * AID [071]

In this case, the verb AGREE normally codes a 081 (“Agree”) category but
the AGREED TO LOAN would code 071 (“Extend economic aid”) and AGREED TO
LET ESCAPE would code 066 (“Release persons or property”).

By default, KEDS tries to match phrases in the order of longest to shortest;
phrases are automatically sorted by length as they are entered. If you want the
phrases checked in a different order, this can be done by either

• Change the order in the .Verbs file using a word processor;

• Insert some additional blanks in the middle of the pattern to make it
longer than the phrases you want checked after it. These blanks will be
removed as the phrase is recorded, but the phrase will be positioned in
the list according to its length with the blanks included.

Note: The verb token * shows the location of the verb root as a sep-
arate string and it cannot be attached to prefixes, suffixes or verb
endings. The only characters that can legally precede and follow
the * are the underscore and blank. Other characters will cause a
syntax error. Prefixed and suffixed forms of verb roots (e.g. PA-
TROL/PATROLMAN) should be entered as separate, null-coded
roots.

4.4.1 What is a verb?

In a formal language such as Pascal or SAS, words are associated with a single
meaning or a small set of related meanings. While this is often true when
dealing with natural language – for example the English words accuse and deny
are almost never incorrectly coded in Reuters leadsthere are exceptions. In
English, there are lots of exceptions.

Those exceptions are due to the fact that English is primarily an “isolating”
language where the grammatical role of a word can change depending on its
position in a sentence.1 For example, in the phrase

1See Pinker (1994 , chapter 12) for an extended discussion of these issues. The prob-
lem is further complicated by the fact that English is derived from an inflected Germanic
language that evolved over a millenium into a language that is now largely isolating. Ves-
tiges of inflection remain at quirky points in the language – for example “correct” English
retains (barely...) the distinction between the nominative who and the accusative whom while
dropping that distinction in you/ye., and the inflected “-ed” is used to indicate past tense.
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The treaty was broken

the word broken is a verb, while in the sentence

The diplomats discussed the broken treaty,

the word broken is an adjective. In contrast, in inflected languages – for example
Latin, Russian or American Sign Language – a root is usually modified by
prefixes, suffixes or vowel changes to indicate that it is being used for a different
purpose. For example, in Latin either of these phrases correspond to “Man bites
dog”:

Homo canem mordet
Canem homo mordet

The order of the subject and object are irrelevant; to create the sentence “Dog
bites man,” the nouns themselves must be changed:

Canis hominem mordet
Hominem canis mordet

English, in contrast, uses the same word whether a noun is a subject or object2

and the role of the noun as subject versus object is determined by its position.
Those positions can be changed by the use of passive voice:

The dog was bitten by the man

but “dog” and “man” are still unchanged.

Words can also change from verbs to nouns without modification:

When Jill returned from the car wash, she parked her car in the drive.

The only indication that wash and drive are nouns rather than verbs comes
from their position in the two prepositional phrases.

As Pinker notes, English is a language containing a extraordinary number of
homonyms – words that sound identical but have different roles and meanings

To further complicate matters, a series of arbitrary grammatical rules derived from Latin
(an inflected language) were incorporated into formal English during the 18th century by
socially-mobile London elites seeking to differentiate their use of the vernacular from that
of the masses: The two notorious examples of this is the prohibition against split infinitives
and against ending a sentence with a prepositions. These two constructions are completely
consistent with the underlying grammar of English, but not Latin.

In the late 20th century, these rules were incorporated into the so-called “grammar check-
ers” found in word processors. Those programs contain parsers that are somewhat more
sophisticated than the one used in KEDS but they are still incapable of handling many of the
common grammatical techniques mastered by 5-year-olds. As a consequence, the grammar
checkers look for the easy stuff – split infinitives, passive voice – and cybernetically complain
about it. The resulting text tends to have the same relationship to natural language that
elevator music has to Mozart.

2It retains this distinction in pronouns: “I” versus “me”, “she” versus “her” and so forth.
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depending on how they are used in a sentence. This fact has yet to filter down
into popular discussions of the language – hence the ad nauseam complaints
about the alleged misuse of hopefully at the beginning of a sentence

Hopefully, the ceasefire will hold

when in fact the role of hopefully is not to modify a verb in this sentence3, any
more than the role of wash is that of a verb in the phrase car wash.

What does this mean for KEDS? It is not a full parser, and generally assigns
each string of characters to only a single class of words.4 This can lead to
ambiguities. However, KEDS’s patterns are oriented towards looking at the
location of various words with respect to each other, and this facility is very
important in determining the meaning of words in English. The upshot is that
you will find that dictionary development involves a lot of effort in finding
phrases that must be null-coded5 or otherwise assigned an interpretation distinct
from the root. This is not a feature of the program but rather a feature of the
English language. On the positive side, after you have worked with KEDS for
some time, you will have a much deeper appreciation of how the grammar of
English actually works, as distinct from the much more simplified grammar you
were probably taught at some point.

The key to the effective use of phrases is to make sure that phrases are sorted
into the transitive verb that determines the event code. Do not code indicators
of tense (e.g. HAS, WILL) or forms of “to be” (IS, WAS etc.) as verbs; use the
transitive verb that indicates the action (this will often be an infinitive, e.g. in
WILLING TO NEGOTIATE the verb is NEGOTIATE rather than WILLING). Having
done that, the next step is to null-code phrases where the word is not being
used as a verb, either because it occurs in an idiomatic expression (“Read my
lips”) or because the string matches a homonym that is not a verb.

In our work with Reuters reports on the Middle East, two words stand out
as particularly problematic: FORCE and ATTACK. Both words can be used
either as nouns (“A guerrilla force launched an attack”) or as verbs (“Rebel
radio said guerrillas would attack in order to force concessions”) and occur
frequently in reports about military conflict. FORCE and ATTACK are further
complicated because they can be used to refer both to verbal actions (persuasion
and criticism) and to uses of force; both uses are common in Reuters. In our
dictionaries, a large number of patterns are associated with each of these words
to try to distinguish the noun usage from the verb usage. ARMS, BATTLE,
FIRE, HELP, ORDER, PLAN, PLEDGE, STRIKE and SUPPORT are other

3It expresses the intent of the speaker, and as such is comparable to “accordingly,” “gen-
erally,” “ideally,” curiously,” “supposedly” or any of the 18 additional examples in Pinker’s
list of “-ly” words that modify sentences.

4This can be overridden using a CLASSES: statement, discussed in the Classes, Composite
Patterns and Rules chapter.

5English also, of course, allows verbs to be created from nouns:
null-cod’ed. verb. 1. the act of assigning a null code [- - -] to a verb phrase in KEDS.
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examples of words that are used both as verbs and as nouns.

A final complication arises from the tendency of the English to based some
adjective on verbs – for example “the wrecked car” or “the broken treaty.”
Usually these do not cause problems – in fact at times they allow KEDS to
assign the correct code based on an adjective rather than a verb – but they
should be kept in mind.

4.4.2 Pattern Matching in Verb Phrases

Verb phrases can use either simple or composite patterns. This section will dis-
cuss the simple patterns; composite patterns are covered in the chapter Classes,
Composite Patterns and Rules.

By default, phrase matching stops when a conjunction (AND , BUT and any
additional conjunctions specified in the .Options or .Class file) is encountered,
so that a verb phrase cannot match words that occur after a conjunctions. The
word AND in a compound actor phrase does not affect this, since it is removed
when the compound actor is constructed. There are two exceptions to this rule:

• The conjunction is connected to verb by underscores, e.g.

SHOT
- * AND KILLED6

• The parameter IGNORE CONJUNCTIONS=TRUE has been set in
the .Options file.

When coding expository written text such as news leads, using KEDS default
treatment of conjunctions will usually produce the best results. IGNORE
CONJUNCTIONS=TRUE is sometimes helpful when coding transcribed
verbal material (e.g. news conferences), where conjunctions are used more fre-
quently.

6In general, this type of construction should be avoided because the conjunction AND
will not be eliminated. If a conjunction is used in a compound verb, include both parts as
a distinct verb , rather than as a phrase, in order to keep the sentence from being coded as
compound. Compound verbs become particularly problematic when a phrase occurs before
the verb the construction

KILLED [678]
- SHOT AND * [123]

SHOT [345]
creates two separate events:
SHOT [345]
SHOT AND KILLED [123]
because the SHOT AND * patterns is matched across the conjunction, and SHOT is coded

because it is in the first part of a compound sentence.
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Notes: Conjunctions do not stop searches for generic actors , but
conjunctions do stop the search for a designated actor using the $
and + options in a phrase. (see below). The .Options file command

SET:IGNORE CONJUNCTIONS=TRUE

deactivates the conjunction-limited phrase matching. See comments
under Compound Sentences.

Problems matching words inside of multi-word phrases:

Due to a quirk in KEDS pattern matching algorithm, if a word is part of a
multi-word phrase connected by underscores:

STEALTH FIGHTER [USA]

it can will no longer match in a verb phrase such as

FLEW [031]
- FIGHTER * [223]

With this combination, the sentence

Stealth fighters flew towards Baghdad...

would code to

USA 031 IRQ

rather than

USA 223 IRQ.

This characteristic of the algorithm is closer to a bug than a feature, but un-
fortunately it is deep in the code and would be difficult to correct. The verb
phrase

FLEW [031]
- STEALTH FIGHTER * [223]

will get around the problem, though it isn’t a general solution. A future version
of KEDS will probably correct this.

Skipping Intermediate Words

By default, pattern matching skips over intermediate words: the phrase

PROMISED
- * DOLLARS
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will match the phrases

PROMISED TWO MILLION DOLLARS
PROMISED A GRANT OF 30-MILLION DOLLARS

If two words must be consecutive, connect them with an underscore, e.g.

BURNED DOWN

The underscore character and concatenation can be used to force a word or set
of consecutive words to be directly before or after the verb; this is particularly
useful for words that can be interpreted as either nouns or verbs. For example:

ATTACK [122]
- * CRITICISM OF [042]
- * HELICOPTERS [- - -]7

...
POUND [223]
- BRITISH * [- - -]

Designated Actors

Phrases can specify the location of the source and target by using the tokens $
and + respectively. For example, the phrase

ADVISE
- + WAS * BY $

would do the correct assignments on the phrases

EGYPT WAS ADVISED BY THE UNITED STATES

$ and + are assigned to the first actor that is encountered in the appropriate
location. In other words in matching

- + WAS * BY $

the system will search for the target using the first actor before WAS ... ADVISE
and search for the source using the first actor after BY. In this example, the
actor locations are used to reverse the source and target when a verb phrase is
in passive voice.8

The symbol % specifies a compound actor that should be assigned to both the
source and target; it works with either coded or parsed compounds. This is
typically used when dealing with consultations:

7“- - -” is a “null code” that causes a phrase not to be coded; it is described below.
8This could also be done using a general rule for passive voice; this is described below.
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REPRESENTATIVES OF SYRIA AND JORDAN WILL MEET IN CAIRO

The phrase

MEET
- % * IN [031]

would do the correct assignments

SYR 031 JOR
JOR 031 SYR

rather than

SYR 031 EGY
JOR 031 EGY

If no compound actor is found in the sentence, the phrase containing the com-
pound assignment fails, and then any shorter phrases in the verb’s phrase list
will be checked.

Note: If a sentence might have both a compound subject and a
compound object:

Representatives of the USA and Israel will meet with representatives
of Syria and Lebanon

be sure that a ‘$ * +’ comes before the ‘% *’ pattern

MEET
-$ * +
-% *

If this is not done, the % token will cause the actors in the com-
pound subject to be used as both the source and target, ignoring
the compound object.

The source and target tokens are optional; if they are not specified then default
rules (see below) are used to locate the source and target. However, if a source
or target is specified in a phrase and then not found in the appropriate location,
the phrase as a whole fails. Similarly, if a string in a phrase is missing, then the
phrase as a whole fails.

Note: Precedence in phrase matching

A phrase is matched in the forward direction from the beginning of
the clause.9 Each element of the phrase is matched in order. For
example, if one had a sentence of the form

9This is a change from the system used in KEDS prior to version 0.9, where pattern
matching first looked backwards, then forwards, from the verb. This change does not seem to
make much difference in coding.
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<actor1> s1 <actor2><verb>

and the phrase

- + s1 *

the target would be assigned to <actor1>, because this occurs before
s1.

If the sentence had the form:

s1 <actor2><verb>

the phrase match would fail, because there is no actors prior to s1.

Because phrase matches are stopped by conjunctions, a phrase match
will only apply inside a clause in a compound sentence.

4.5 Default Actors

If a verb phrase does not designate a source and target, these are filled in using
default searches. The default source search is done first: it starts at the begin-
ning of the text and the first actor encountered prior to the verb is designated
the source.10 If there is no actor prior to the verb, the source is set to missing.
The default target search then tries to find an actor after the verb that has a
code distinct from the code of the source; if no such actor is found, a search
is made for the first actor before the verb that has a code that is distinct from
the code of the source. If no such target is found and the source is compound,
this is also designated as the target; the system automatically eliminates codes
which would have the same source and target. Unless the .Options file command
SET: IGNORE CONJUNCTIONS=TRUE has been used, these searches
are confined to the conjunction-delimited clause containing the verb. Actors
with null codes are ignored in both searches.

If this search fails to assign a source or target and default patterns have been
set in the .Options file using the SOURCE or TARGET commands, then the
system tries to match one of these patterns. These patterns can be matched
anywhere in the sentence, not just in the clause containing the verb.

Finally, if no SOURCE or TARGET patterns match and a default source or
target code has been specified using a SOURCE: [code] or TARGET: [code]
command in the .Options file, that code is assigned. If none of these are used,
then the item is considered missing and the missing value code *** is assigned.

10If a target has already been found through a pattern match, the source is the first actor
with a code distinct from the code of the target.
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Note: Assigning a default source will guarantee that the first verb
in each clause (or the sentence) is coded. Because English words
that look like verbs may actually be nouns or adjectives (see the
Verbs/What is a verb? section above) this can result in coding that
is significantly different from that generated by the default options,
where a verb must be preceded by an actor.



Chapter 5

SPECIAL PURPOSE
CODES

5.1 Purpose

Most of the codes used in the KEDS dictionaries are the simple codes assigned
by the event coding scheme to actors and events. However, KEDS has three
special codes – the null, discard and complex codes – that can be attached to
phrases to change how KEDS deals with a sentence. Codes can also be assigned
priorities, they can be restricted in time, and multiple events can be coded from
a single phrase.

The null, discard and complex codes can be can be included in either the .Actors
or .Verbs files. In the .Actors file, they can also be included as date-restricted
codes. In the .Verbs file, they can be assigned to either roots or phrases. These
codes do not generate events.

Note: It is generally better to assign discard and complex codes
to roots rather than phrases in the .Verbs file. When the codes are
assigned to a root, a sentence meeting the complex or discard criteria
can be identified as soon as all of the words in the text are classified.
If the codes are assigned to phrases, the verb roots in the text must
be evaluated first, and in some instances the phrases of a root may
not be evaluated, for example if the verb occurs late in a phrase
or evaluation is halted by a dominant code. The only advantage to
assigning the codes in phrases is to keep all of the phrases dealing
with a verb in one place. This problem does not apply to null codes,
which simply eliminate a phrases from being coded and are very
common

38
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5.2 Null Code [- - -]

The null code [- - -] is used to eliminate phrases that would otherwise be confused
with actors or verbs. Phrases with null codes can be in either the .Actors or
.Verbs file. Experience in both the KEDS and PANDA projects has shown that
finding the appropriate phrases to be null coded is a key element in bringing
the accuracy of a coding system above the 75% level. Null-coded phrases are a
substantial part of the dictionaries of both projects.

Words that have only a null code – all actors, and nulled-coded verbs without
patterns – are converted to type “null” and are henceforth not considered actors
or verbs. The choice of putting null-coded words in the .Actors or .Verbs file is
one of convenience and does not affect the efficiency of the coding; usually it is
best to put a null-coded word in the list containing words with a similar stem.

Example

Using the actors

ISRAEL [ISR]
WEST BANK [PAL]

the phrase

ISRAELI-OCCUPIED WEST BANK AND GAZA

will generate both ISR and PAL as actors. By adding the null code

ISRAELI-OCCUPIED [- - -]

only PAL is generated as an actor.

Example

The phrase

the head of lebanon’s catholic community

generates a verb identification for HEAD, since is more commonly a verb, e.g.

EGYPTIAN PRESIDENT MUBARAK HEADED FOR A MEETING WITH

The code

THE HEAD OF [- - -]

eliminates this problem.
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5.3 Discard Code [ # # # ]

The text is likely to contain some events which involve multiple international
actors but which are non-political: sports events are the most common; traf-
fic accidents and natural disasters involving tourists a close second. These can
be automatically discarded by using the discard code [ # # # ].1 The text
is rejected if the number of discard phrases found is greater than or equal to
the Discard Phrases parameter in the Options/Complexity menu option (de-
fault=1) or set using the COMPLEX: command in the .Options file.

Example
MARIJUANA [ # # # ]
MICHAEL JORDAN [ # # # ]
FRANK JORDAN [ # # # ]
REAGAN [ # # # >890120] [USA]
SOCCER [ # # # ]
WORLD CUP [ # # # ]

KILLED [223]
- * IN ACCIDENT [ # # # ]
- WILDLIFE * [ # # # ]

The presence of a discard condition causes most of the other processing of the
text to be terminated; the record will be skipped unless the PAUSE ALWAYS
command is active. Discards should therefore be used only when you are certain
that the record contains nothing of interest; if you might want to look at it, use
a complex code (below) instead.

5.4 Complex Code [+++]

The complex code can be used to identify words and phrases in the .Actors
or .Verbs dictionaries that will cause the program to automatically divert the
text to a .complex file, provided the COMPLEX: command has been included
in the .Options file. The text is diverted if the number of complex phrases
found is greater than or equal to the Complex Phrases parameter in the Op-
tions/Complexity menu option (default=1).

For example, the word GEORGIA can refer to a violence-prone region afflicted
by ethnic conflict and political demagogues in the southern region of the former

1Versions of KEDS prior to 0.9B3 used a system of designating “discard codes,” which
involved the use of special codes - set using the CODE command in the .Options file - whose
text started with ˜ ˜ . If you are using an older dictionary these may still be present; the
relevant phrases should be moved to the <discard> class statement. In version 0.9, these
codes are automatically converted to a standard discard code, but this feature will not be
maintained indefinitely.
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Soviet Union, or to a violence-prone region afflicted by ethnic conflict and polit-
ical demagogues in the southern region of the United States. To a human coder,
the choice of the two GEORGIAs is usually clear from the context of the text,
but it may be difficult to distinguish the cases using only the sparse parsing
available in KEDS. Diverting the cases to the .complex file allows these to be
later coded by a human. In some coding systems, the complex code might be
used with verb phrases whose coding almost always require information beyond
that available in the SVO structure.

5.5 Special Purpose Codes for Actors

5.5.1 Coded Compound Actors

In some circumstances, it is useful to have a single phrase generate multiple
actor codes. This is referred to as a coded compound actor, as distinct from a
parsed compound, which is based on the structure of the sentence.

Coded compound actors are entered by separating the actor codes with a slash
(“/”). For example

EAST AND WEST GERMANY [GME/GMW]
NORTH AND SOUTH KOREA [KON/KOS]

This method can also be used to expand the membership of alliances when that
is appropriate:

G7 [USA/GMW/FRN/ITL/UK/JAP/CAN]

5.5.2 Date Restricted Codes

In a data set covering a long time period, some individuals will change their
role. For example, Boutros Boutros Ghali was in the foreign ministry of Egypt
prior to 1 January 1992, then became Secretary General of the United Nations
on that date. To code the period 1990-1994, Boutros Ghali needs to be assigned
the code EGY for part of the period, and UNO for the remainder.

This problem is handled by assigning multiple codes, and then putting a date
restriction on each code. Date restrictions have the following formats; each
restricted code goes in its own set of brackets.

<YYMMDD Assign the code for events prior to and including this date

>YYMMDD Assign the code for events after and including this date
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YYMMDD-YYMMDD Assign the code for events between the two dates

Using this formats, the coding for Boutros-Ghali would be

BOUTROS-GHALI [EGY <911231] [UNO >920101]

A code with no date restriction will be used as a default. If Boutros-Ghali has a
UN position until 31 December 1999, then returns to a position in the Egyptian
government, the following coding would work:

BOUTROS-GHALI [EGY] [UNO 920101-991231]

The codes used with date restrictions can be complex (compound codes and
implicit agents) as will as simple codes.

Notes on date restrictions:

1. Years 00 through 10 are assumed to be 2000 through 2010, so in the KEDS
coding system the year “01” is greater than “99.” If you are still using
KEDS after 2010, get a better program...

2. If a date cannot be interpreted (e.g. is less than six characters; contains
non-numeric characters or characters out of range), the following defaults
are used
Year 14
Month 01
Day 01

When the date is written by the system (e.g. when the .Actors file is
saved), a comment will be added to any code containing “140101” indi-
cating that it is a possible error.

3. The total length of the codes and date restrictions must be less than or
equal to 80 characters; any codes beyond this length will be ignored.

4. If there are inconsistent restrictions, for example

[XXX <920101] [YYY <930101]

the first restriction satisfied will be applied. Restrictions are evaluated
in the order they are listed, except for the default (unrestricted) code,
which is applied only if none of the restrictions are satisfied. If none of
the restrictions are satisfied and there is no default code, the null code is
assigned.

5. If only a single date restriction is used, e.g.

EAST GERMANY [GME <901103]

the system will automatically add a null code as the default:

EAST GERMANY [GME <901103] [- - -]
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These null codes will appear in the modify dialog and in the .Actors file
when it is saved

5.6 Special Purpose Codes for Verbs

5.6.1 Subordinate Codes

A subordinate code is used only if no other events are found. It is denoted by
adding ? to the end of the event code, e.g.

SAID [023?]

The main use for this is coding attribution. Typically Reuters events start with

<actor1 > SAID <pronoun> <verb> <actor2 >

For example

GEORGE BUSH SAID HE REJECTED SYRIA’S ASSERTION...

The relevant event is

usa rejected syria

rather than

usa said syria

The combination of dereferencing the pronoun HE and using a subordinate code
will handle this.

Note: Subordinate events are promoted – converted to regular
events – according to the following rules:

1. Look for a regular event with a valid source and target. If this
exists, do not code the subordinate event. “Valid” means the
source and target meet the criteria set in the VALID command
or Options/Valid Event menu option.

2. If every event is subordinate, promote the first subordinate
event that has a valid source and valid target.

5.6.2 Dominant Codes

A dominant code stops the further coding of events and becomes the only event
reported in a sentence or clause;2 it is used in situations where the coding

2Depending on the CODE BY... parameter, described below
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emphasizes one type of action over any others found in the sentence. A dominant
code is specified by adding ! to the end of the code; for example:

REJECT
- * EFFORT BY [111!]

Unlike regular events, phrase with a dominant code does not require a valid
source or target to be coded. If you only want the phrase to be dominant if it
has a source and target, specify these explicitly in the phrase:

REJECT
- $ * EFFORT BY + [111!]

REFUSED
- $ * + [111!]

In most cases, the command SET: CHECK DOMINANT = TRUE needs
to be in the .Options file if dominant codes are used. This command forces
the system to continue to check all of the verbs in a sentence or clause after it
has found an event; this insures that if a verb or phrase containing a dominant
code is anywhere in the sentence it will be found. Under the default condition,
CHECK DOMINANT = FALSE, the system stops checking verbs in a
sentence or clause once it has found a non-subordinate event. Checking all of
the verbs for dominant codes may noticeably slow the program, particularly if
verbs in the text are many and dominant codes are few.

Example:

If you wanted to assign a special code to statements that contained a form of an
attribution indicating that the source was unreliable, while still recording who
was spreading gossip about whom, the verb list might contain

ALLEGED [028!]
RUMORED [028!]
SPECULATED [028!]
UNCONFIRMED REPORTS [028!]

along with the SET: CHECK DOMINANT = TRUE command in the
.Options file.

5.6.3 Paired Codes

There are an assortment of circumstances where the WEIS coding scheme gen-
erates symmetric events of the form

<Actor1 > Event1 <Actor2 >
<Actor2 > Event2 <Actor1 >



CHAPTER 5. SPECIAL PURPOSE CODES 45

For example, a meeting between Israel and Egypt would generate the pair

ISR 031 UAR (meet with)
UAR 031 ISR (meet with)

A visit by a Jordanian official to Syria would generate the pair

JOR 032 SYR (visit; go to)
SYR 033 JOR (receive visit; host)

These combinations can be coded automatically by using a pair of codes sepa-
rated by a colon (:); for example

FLEW
- $ * TO + [032:033]

would do the visit-and-receive pair, while

MEET [031:031]

generates two events with the same code but with the source and target reversed.

Note: In our tests comparing KEDS to human coders, the pro-
gram’s consistency in correctly assigning multiple codes goes a long
way towards compensating for its inability to interpret complex sen-
tences. Human coders tend to miss some of the source-target com-
binations implied by paired codes and compound actors; KEDS gets
them all. In Reuters leads, these situations generate a lot of events.
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PARSING: HOW KEDS
LOOKS AT A SENTENCE

6.1 Purpose

In order to code event data, KEDS must parse a sentence to identify the subject,
verb phrase, and object of the sentence. To do this, KEDS employs a number
of simple but general grammatical rules for parsing English sentences. These
are sufficient to handle most of the sentence structures encountered in Reuters.
These standard rules can be supplemented by customized transformations spec-
ified in KEDS rules statements; this chapter will discuss only the standard
transformations. KEDS is not a general purpose natural language parser:1 if
the source text uses complex sentence structures – as might be encountered, for
example, in political speeches or legal documents – then KEDS is probably not
the appropriate coding program.

KEDS recognizes the following types of words, which are called “classes” in the
KEDS system. Some of these correspond to conventional parts of speech (e.g.
pronouns, conjunctions), while others are more specific (e.g. actors and agents).

1See Pinker (1994) for a wide variety of examples of why machine-parsing is a more difficult
problem than it first appears to be. The problem of creating a general machine parser, even
for a single language such as English, has defied the efforts of linguists and computer scientists
for forty years, and KEDS is no breakthrough in this regard. Instead, the approach taken
by KEDS is to use a small number of fairly robust parsing techniques that provide sufficient
information about a sentence from a newswire reports that event data can be correctly coded
most of the time.

46
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Class Content

actor Nouns in the .Actors dictionary

agents Improper nouns, set in .Options file

im.actr Implicit actor: an agent that is treated as an actor

verb Verbs in the .Verbs dictionary (but not words inside verb phrases)

conj Conjunctions: AND and BUT

pronoun Pronouns: HE SHE IT THEY , THEM and ITS

prep Prepositions: these are set in the .Options file and used only
in the Places option

comma Commas

stop Articles: A AN THE (these are discarded)

null Null-coded actors, null-coded verbs without phrases, and any
word not in the dictionary

All of these classes except “null” can be used in the standard parsing; they
can also be used to construct complex patterns and rules. In its standard
parsing, KEDS does not recognize adjectives, and therefore does not formally
recognize noun phrases. This has little impact on coding accuracy for Reuters
lead sentences, though it might be important for other texts. If such information
is important in classifying, it should be incorporated into a verb phrase.

The standard KEDS parsing does the following:

• Identifies compound actors

• Reduces titles to a single actor reference

• Identifies compound clauses within a sentence

• Locates the references of pronouns

• Ignores stop words

• Eliminates comma-delimited subordinate clauses

Additional parsing features can be activated by using commands in the .Options
file:
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• Association of agents with actors

• Evaluation of prepositional phrases for determining location

6.2 Parsed Compound Actors

KEDS recognizes compound nouns of the form

<np> AND <actor>
<np1 > , <np2 > , ... <npn−1 > AND <actorn >

where

np = <actor> | <np> <agent>2

and does the appropriate duplication of events. This is a parsed compound
actor, as distinct from the coded compound discussed earlier. A compound
actor is treated as having the regular actor-class during the coding (e.g. during
the search for sources and targets).

Compound actors are concatenated in the Word List and Parsed Text Display,
with the symbol “&” replacing the word “AND”.

The actor must follow immediately after the ‘AND’: the phrase

YITZHAK SHAMIR AND A TIRED JAMES BAKER

would not code as a compound because of the intervening adjective TIRED.
Such constructions are infrequent in Reuters. Words in the <stop> class are
an exception to this; these are discussed below.

Example:

The sentence

THE UNITED STATES AND EGYPT APPROVED OF EFFORTS BY ISRAEL AND JORDAN
TO ...

would code to

USA <APPROVED> ISR
USA <APPROVED> JOR
UAR <APPROVED> ISR
UAR <APPROVED> JOR

With agent coding and the verb pattern
2In other words, the compounds of a compound phrase can be either actors or actors

followed by any number of agents.
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CLASH
-% * [221:221]

the sentence

PALESTINIAN POLICE AND ISRAELI SETTLERS CLASHED...

would code to

PAL POL <221> ISR CIV
ISR CIV <221> PAL POL

Note: The system will not detect a parsed compound actor in com-
bination with a coded compound actor containing a conjunction.3

For example, if EAST AND WEST GERMANY was a coded
compound, then the phrase

POLAND, HUNGARY, EAST AND WEST GERMANY AGREED TO COORDINATE

would not correctly identify the compound subject because the AND
is absorbed in the coded compound. To get around this problem,
use a word processor or REPLACE: command (described in the
.Options chapter) to replace EAST AND WEST GERMANY
with EAST GERMANY AND WEST GERMANY.

6.2.1 Stop Words in Compounds

In text analysis, the term “stop words” refers to common words that either con-
tribute little to the interpretation of a text, or would require special treatment
by the parser because they could be erroneously interpreted. In KEDS, most
words and phrases that can cause erroneous interpretation are eliminated using
the null codes discussed above.

KEDS contains a <stop> class that is used to eliminate articles in compound
phrases (and in any other syntactic processing), so that

ISRAEL AND THE UNITED STATES DISCUSSED...

is converted to

ISRAEL & UNITED STATES

The only words KEDS classifies automatically as stop words are the articles:

A AN THE
3This is not done as a general parsing rule because coded compounds – e.g. G7, MA-

JOR POWERS, GANG OF FOUR – do not necessarily contain embedded conjunctions.
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Stop words are ignored in the syntactic phase of the analysis, but they are
still used in the pattern matching for verb phrases or in the string matching in
ISSUES facility.

Additional stop words can be added with the command

STOP: <text>

in the .Options file or by using <stop> = in the .Classes file. It is advisable
to use an underscore at the end of a stop word to guarantee that no stemming
will be done: for example using the stop word

STOP: OF

would eliminate such words as OFFICIAL, OFFERED, and OFTEN, whereas

STOP: OF

only eliminates OF.

6.3 Titles

With an appropriately general dictionary of actors, a phrases such as

Israeli Prime Minister Yitzhak Shamir

will result in two <actor> entries: one for Israeli and one for Shamir. This can
be eliminated by designating the phrase PRIME MINISTER as a <title>:
When a <title> is found, the system converts a phrase of the form.

<actor1 > <title> <actor2 >

into a single <actor> if and only if <actor1 > and <actor2 > refer to the same
code. <title> does not have to be an official title; for example the phrase

Palestinian leader Yasar Arafat

could be converted to a single actor by designating the word leader as a title.
Titles are set in the .Options file or by using a CLASSES: commands.

Example

The phrase

Israeli Prime Minister Yitzhak Shamir and Egyptian President Hosni
Mubarak have agreed to hold talks soon, Israel Radio said

would code to
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ISR ISR AND UAR UAR

in the absence of titles. With the .Options file commands

TITLE: PRIME MINISTER
TITLE: PRESIDENT

the phrase codes to

ISR AND UAR

and is parsed as a compound actor.

Note: Because KEDS automatically searches for a target that has
a code distinct from that of the source, a complete list of titles is
usually not critical for coding accuracy, but it may be useful in some
cases.

6.4 Compound Sentences

By default, if a sentence is compound – that is, it contains multiple clauses
separated with conjunctions – then each clause will be coded, so the sentence
could generate multiple events. This can be changed using the SET: CODE
BY ... command discussed below. The first event in a clauses that is recognized
will be coded (with adjustments for subordinate and dominant codes). This
means events are prioritized by:

• left to right order of verbs in the clause

• phrases within a verb by length

The two standard conjunctions are AND and BUT , though additional con-
junctions can be added using a .Classes file. ANDs that are used in a com-
pound actor formation or by a verb phrase that itself contains a compound (e.g.
SHOT AND KILLED) are not used to delimit clauses.

When a compound sentence is encountered, the source actor is kept the same
unless it is explicitly overridden by a $ operator in a phrase or if an actor occurs
immediately after the conjunction. In coding after a conjunction, the target is
reset using the default rules for assigning targets (e.g. the code of the target
must be distinct from the code of the source).

If no event is found in the first clause, the source actor is set to the first actor
in that clause, provided one exists. This usually identifies the correct subject of
a sentence even when the verb in the first clause is not in the dictionary.
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Note: A maximum of 8 conjunctions are tracked for purposes de-
limiting clauses. If there are more conjunctions in the sentence, the
remainder of the sentence is treated as a single clause; such cases
are quite rare.

6.4.1 CODE BY... Command

The SET: CODE BY ... parameter, set in the .Options file, determines when
the system stops looking for events. There are three options:

CODE BY SENTENCE
The system codes only the first event it finds in the sentence. A subordinate
event is promoted only if no other event is found in the sentence. If CHECK
DOMINANT=TRUE, the first dominant event found in the sentence is coded.

CODE BY CLAUSE.
The system codes the first event it finds in each conjunction-delimited clause in
the sentence. A subordinate event is promoted only if no other event is found in
the clause containing the subordinate event. If CHECK DOMINANT=TRUE,
the first dominant event found in each clause is coded.

CODE ALL.
The system codes every event that it finds in the sentence. A subordinate
event is promoted only if no other event is found in the sentence. If CHECK
DOMINANT=TRUE, the first dominant event found in the sentence is coded.
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6.4.2 Effects of SET: CODE BY on Event Selection

CHECK DOMINANT= CHECK DOMINANT=
FALSE TRUE

C The first verb phrase in each The first verb phrase in each
L conjunction-delimited clause that conjunction-delimited clause that
A contains a non-subordinate code contains a non-subordinate code
U and a valid source and target is and a valid source and target is
S coded. coded. If a verb phrase with a
E dominant code is found

anywhere in a clause, it overrides
any other events coded in the
clause.

S The first verb phrase in the The first verb phrase in the
E sentence that contains a non- sentence that contains a non-
N subordinate code and a valid subordinate code and a valid
T source and target is coded. source and target is coded. If a
E verb phrase with a dominant
N code is found anywhere in the
C sentence, it overrides any other
E events coded in the sentence.

A All verb phrases in the sentence All verb phrases in the sentence
L are coded. are coded. If a verb phrase with
L a dominant code is found

anywhere in the sentence, it
overrides any other events
coded in the sentence.

Notes:

1. If all events found in a sentence are subordinate, one event is promoted
according to the rules described in the Subordinate Code section.

2. If a dominant event is found, it is coded even if it contains a missing source
or target.

3. The conditions for a valid source and target are set using a VALID com-
mand or with the Options/Valid Events menu command.

Example
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If BOMBED, SAID and ATTACK are verbs, then the sentence

Israel bombed guerrilla bases in southern Lebanon and said this was
in retaliation for earlier rocket attacks...

CODE BY SENTENCE would generate one event

ISR BOMBED LEB

CODE BY CLAUSE would generate two events

ISR BOMBED LEB
ISR SAID LEB

CODE ALL would generate three events

ISR BOMBED LEB
ISR SAID LEB
ISR ATTACK LEB

6.4.3 SET: IGNORE CONJUNCTIONS = TRUE Com-
mand

This .Options file command causes the pattern matching to ignore conjunctions,
so that a match can occur across a conjunction even if the conjunction was not
absorbed by a verb root. This usually is not desirable and can have some
unanticipated effects. For example the .Verbs entries4

KILLED [678]
- SHOT AND * [123]
. . .
SHOT [345]

and the phrase “XXX shot and killed YYY” will create two separate events:

XXX SHOT [345] YYY
XXX SHOT AND KILLED [123] YYY

because the SHOT AND * patterns is matched across the conjunction, and
SHOT is coded because it is in the first part of a compound sentence. With
IGNORE CONJUNCTIONS=FALSE the coding is

XXX SHOT [345] *** (no target)
XXX KILLED [678] YYY

4This would not be a particularly brilliant combination of verb phrases in the best of
circumstances but it is the sort of thing that can occur when multiple, inexperienced coders
are working on the dictionaries...
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6.5 Dereferencing Pronouns

Pronouns occur fairly frequently in Reuters, for example in the phrase:

Turkey believes Iraq and Syria can cope with a decrease in vital water
they receive from the mighty Euphrates river when a major dam is filled
next month.

Dereferencing pronouns involves ascertaining which noun or nouns a pronoun
refers to; in this example THEY refers to IRAQ AND SYRIA. Dereferencing is a
very general problem in parsing5 the techniques used in KEDS are quite sim-
ple, though fairly effective when applied to Reuters leads. In compound sen-
tences, dereferencing is important in bringing actor references into the appro-
priate clause of the sentence. The pronoun IT is most likely to be incorrectly
dereferenced since IT sometimes refers to an action, an abstract concept, or a
direct object.6

KEDS uses the following rules to handle pronoun dereferencing:7

HE, SHE, IT assign the first actor in the sentence

ITS, HIS, HER assign to the first actor prior to the pronoun

THEY, THEM, THEIR assign either:

• First compound actor if one exists

• First actor followed by a word ending in ‘S’, a specified plural or an agent8

(e.g. POLISH MILITIA, SYRIAN SOLDIERS)

In the Word List display, dereferenced pronouns are typed as <actor> and show
up as the pronoun followed by the symbol “− >” followed by the reference. In
the example above, THEY would appear as

THEY− >IRAQ & SYRIA

When full stories, rather than only lead sentences, are being coded, pronoun
dereferencing can also occur across source texts; see the discussion of the FOR-
WARD command in the .OPTIONS chapter.

5It is also a problem that cannot be solved on a purely syntactic basis: in the sentence
BAKER WILL MEET WITH MUBARAK WHEN HE GOES TO GENEVA

the pronoun HE could refer to either BAKER or MUBARAK depending on who is going to Geneva.
6Because English syntax require a subject, the interpretation of IT is further complicated

by its use as a placeholder in sentences that have no subject – It is raining – or as the
object when a transitive verb – The ambassadors discussed it over dinner.

7It is possible to add additional pronouns using a CLASS command: these will be assigned
to the first actor unless they begin with a ‘T’ (as in THEY and THEM) or have ‘S’ as the
third letter (as in ITS).

8See comments on plurals and agents in the .Options File and Agents chapters
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6.6 Elimination of Comma-Delimited Nonrestric-
tive Clauses

In Reuters leads, short clauses delimited by commas and clauses between com-
mas and the end of the sentence are usually irrelevant to coding events:

President Hosni Mubarak, in a grim warning underlining Egypt’s deepening
economic crisis, will request emergency assistance from the International
Monetary Fund, the official UAE news agency WAM said on Thursday ..

Following the vocabulary used in Turabian (1987:51), these are called nonre-
strictive clauses, or comma-delimited clauses.9

KEDS’s default action is to eliminate these phrases if the number of words
between commas is greater than two and less than or equal to ten; the mini-
mum allows the preservation of lists with commas in them. The maximum and
minimum length of an eliminated phrase can be adjusted using the COMMA
command in the .Options file; this feature can also be turned off. Commas in-
side numbers – for example 10,000 – do not trigger this feature, nor do commas
insides lists of actors that were converted to parsed compounds.

If the SET: CODE NONRESTRICTIVE =TRUE command is used in
the .Options file, the text inside the nonrestrictive clauses is checked for events
if and only if no events were found in the text that remained after those clauses
were deleted. In our experience, this strategy is likely to result in a number of
incorrectly coded events, but it might be useful in dealing with material where
the editors made liberal use of commas.

See Also: OMIT command

6.7 Summary: Parsing

Parsing operations occur in the following order; operations in italics are op-
tional:

1. Filter the text for punctuation, diacriticals and REPLACE rules.

2. Assign classes to all words that are in the dictionary; if a word cannot be
found it is classified <null>

3. Apply rules
9In some earlier versions of KEDS these were called “subordinate clauses,” which was an

incorrect use of that grammatical term. Some comma-delimited clauses found in event reports
are not nonrestrictive by Turabian’s definition either – Turabian distinguishes 14 different
types of comma-delimited clauses – but this term will do for purposes of machine coding...
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4. Reduce title phrases

5. Assign actors to agents

6. Reduce compound actors

7. Dereference pronouns

8. Eliminate comma-delimited nonrestrictive clauses

9. Identify the clauses in a compound sentence.

10. Check the phrases for each verb in each clause of the sentence

11. When a verb phrase is found and does not have designated actors, identify
source and target:

(a) Source is the first actor in the sentence

(b) Target is the first actor after the verb that has a code distinct from
that of the source; if this does not exist, it is the first actor before
the verb

12. Identify issues using the issues lists.



Chapter 7

.OPTIONS FILE

7.1 Purpose

The .Options file is used to provide additional processing information and con-
tains a variety of specific commands.1 The commands in this file can have
a substantial impact on how KEDS does coding, and a dictionary that has
been developed under one set of .Options settings may work very poorly under
another set.

This chapter discusses some of the general commands in the Options file. A
number of other commands discussed in later chapters for example formatting,
filtering, issues and agents are also activated using commands in the Options
file.

7.2 .Options Command Notes

1. The .Options file should be created using a word processor and saved in
flat ASCII (TEXT) format. The file cannot be changed from within the
KEDS program, though some of the options can be temporarily reset while
the program is running.

2. The command names are given here in full for mnemonic purposes, but
the program usually only looks at the first four characters and the colon.
For example,

TARGET: CZE

could be entered as
1In earlier versions of KEDS this was called the “Special” file.

58
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TARG:CZE

3. At the present time, there is little error checking in most of the commands
in the .Options file. If an improper format is used, the value of the pa-
rameter will usually stay at the default but no indication of an error will
be given. The commands and parameter names are case-sensitive.

4. The .Options file can take input lines up to 255 characters in length, and
in many applications the ISSUE, DISPLAY and OUTPUT commands may
be longer than the 80-character line length used in many words processors.
Be sure to save these as TEXT without the line feeds so that the command
is read as a single string of characters.

7.3 SET <parameter> = <value>

This is a general command that sets various switches and numerical parameters
affecting the operation of the program. Switches are logical and can take the
values TRUE (T) or FALSE (F); numerical parameters have various formats.
The details of most of these settings are given in the sections where their effects
are discussed; the LOCK and DEMO settings are discussed below.
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List of SET switches and parameters
Parameter Section Values Default
FILTER INPUT Input logical TRUE

CODE AGENTS Agent logical FALSE

AGENT SEARCH = Agent numerical (2,2)*
(<back>,<frwd>)

CONVERT AGENTS Agent logical TRUE*

REPLACE EXPLICIT Agent logical FALSE*
AGENTS

CODE BY ... Parsing CLAUSE CLAUSE
ALL
SENTENCE

CODE NONRESTRICTIVE Parsing logical FALSE

CHECK DOMINANT Special codes logical FALSE

CODE PLACES Options logical FALSE

IGNORE CONJUNCTIONS Compound logical FALSE
sentences

NOTES Formatting logical FALSE

PANDA FORMAT Formatting logical FALSE

TEXT FILE Formatting logical FALSE

PROBLEMS FILE Formatting logical FALSE

LOCK Options logical FALSE

DEMO Options logical FALSE

* This is active only if the SET:CODE AGENTS=TRUE command has been used

7.3.1 SET: LOCK = TRUE

This command disables all of the Modify menu options except for New Event. It is
designed to be used if you want to prevent changes from being made in the coding
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dictionaries when doing human-assisted coding.

7.3.2 SET: DEMO = TRUE

This command is designed to be used when constructing a demonstration file (e.g.
KEDS.Sample) and disables the following features:

1. Records are not skipped at the beginning of the file, even if some have been
coded previously;

2. Changes in the actors, verbs and classes lists are not saved;

3. When the end of the .Text file is reached, the program simply terminates rather
than asking whether you want to code another file.

7.4 CODE <code string> = <text>

This command assigns a text string to a code. The text can appear in the output
strings displayed in the event window of the program and providing some text to
describe each event code is strongly recommended when doing machine-assisted coding.
Text can be assigned to either actor or event codes.

Examples:

CODE: 04=APPROVE
CODE: 041=PRAISE
CODE: 042=ENDORSE
CODE: 05=PROMISE
CODE: 051=PROMISE POLICY SUPPORT
CODE: ISR=Israel
CODE: PAL=Palestinians
CODE: JOR=Jordan

7.5 REPLACE: ‘string1 ’ WITH ‘string2 ’

These commands cause an iterated, line-by-line, search-and-replace to be done on the
input text before any additional processing (including punctuation filtering) is done.
Its typical application is to change characters that would otherwise cause problems
after filtering (e.g. diacriticals, smart quotes), getting rid of problematic hyphenated
clauses and standardizing the spelling of verbs. There can be multiple REPLACE
commands in the .Options file.2

2The actual command syntax is quite flexible: the system just looks for the character string
REPL and two strings delimited with ‘.’ The following are equivalent:

REPLACE ‘ABC’ WITH ‘XYZ’
REPL ‘ABC’ ‘XYZ’
REPLACE ‘ABC’− >‘XYZ’
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A string can be anything (including a null string) between two single quotes. To put
a single-quote in a string, use two consecutive single quotes. REPLACE is applied
before characters are shifted to upper case, so for example ‘Á’ and ‘á’ are distinct
characters.

REPLACE is useful for standardizing the spelling of verbs – for example in dealing
with American and British spelling – because separate sets of phrases would otherwise
need to be maintained for each spelling of the verb. Multiple spellings of an actor
(e.g. QADHAFI, QADDAFI, GADDAFI), in contrast, are more efficiently handled by
making multiple entries in the .Actors file.

The REPLACE command is not particularly efficient, and if you are going to be
coding a set of texts several times, it will be faster to use a word processing to do
the substitutions in the original text file, rather than doing the substitutions during
the processing by KEDS. The search-and-replace of a word processor may also be
preferable if you want to search for patterns by paragraph (i.e. across the line breaks
in the text) rather than by line, or if the replacements could result in an infinite loop
(see Note below).

Examples

REPLACE: ‘Å’ WITH ‘AO’
REPLACE: ‘AL-’ WITH ‘ ’
REPLACE: ‘CANNOT’ WITH ‘CAN’T’
REPLACE: ‘ORGANISE’ WITH ‘ORGANIZE’

Note: Because the REPLACE command is iterated, it is possible to
create a REPLACE that generates an infinite loop; for example

REPLACE: ‘ABC’ WITH ‘ABCZ’

would convert ABCDEF to ABCZZZZZZZZ...ZZZZZZDEF. This is a different be-
havior than the search-and-replace in most word processors, which usually replace a
pattern once and then skip to the next occurrence of the target pattern.

Rather than repeat an infinite loop indefinitely, the REPLACE command will stop
(and beep) after a finite number of substitutions equal to the number of characters in
the original source string. The infinite replacement problem will usually be evident in
the displayed text, though the string will have been truncated to 96 characters and
some of the extensions may be lost. This will also be evident from the programming
beeping during autocoding.

7.6 FORWARD: sequence format
FORWARD: THEY

The FORWARD command activates the forwarding of pronoun references between
text records: this is used when coding full stories. When FORWARD is active, if a
pronoun occurs at the beginning of a sentence, prior to any actors, it is dereferenced
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as the first actor in the previous sentence, where “previous” is determined by the
sequence format given in the command, provided that actor occurred before a verb.

By default, the plural pronouns THEY , THEM and THEIR are only replaced if
the forwarded actor is compound. This can be deactivated using the FORWARD:
THEY command described below.

The sequencing of sentences is given by the idinfo string in the date header. The
sequence format string in the command (discussed below) shows where the sequencing
information is found. Forwarding is done if the following conditions hold:

• The story number of the current text is equal to the story number of the previous
source text

• The sentence number of the current text is equal to the sentence number of the
previous source text plus one

Note that the second condition allows your formatting program to specify situations
where forwarding should not be done (e.g. across paragraphs) by increasing the sen-
tence number more than 1. Story and sentence numbers must be less than or equal to
32,767.

Pronouns can be forwarded across multiple stories provided a chains of references is
maintained. For example, in the sequence

810726 REUT-045-001

James Baker begins a Middle East shuttle trip...

810726 REUT-045-002

He will first fly to Israel to...

810726 REUT-045-003

Afterwards, he plans to visit Jordan to...

The “he” in the third sentence (45-003) will still refer to Baker.

7.6.1 Formatting the Sequence Numbers

The sequence format string is composed of the following characters:

ˆ = leading blanks between the date and the start of the idinfo string

* = any character (including blanks after the start of the string)

N = serial number of the story

S = serial number of the sentence within the story

For example, if your text formater had generated story id’s consisting of a 3-character
source identifier, a 3-digit story identifier and a 3-digit sentence identifier:

890227REU312023
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the serial format would be

***NNNSSS

If this format included some blanks and hyphens for readability

890227��REU-312-023

(where �=blank) the serial format would be

^^****NNN*SSS

when the FORWARD command is used, the idinfo string is copied for the first non-
blank (i.e. *, N or S) character to the end of the string, so in the first example the
idinfo string would be nine (9) characters in length; in the second example it would
be eleven (11) characters in length. The maximum length of an idinfo string – not
including leading blanks – is 15 characters.

The story and sentence serial numbers must consist of a sub-string of consecutive N’s
and S’s (i.e. ***NNSSNN is not allowed; the second set of NN will be ignored) but
can be in any order (i.e. SSS***NNN is allowed). If a non-numeric value is found in
either sequence number, the entire number is treated as equal to zero.

Note: If a sentence sequence number (SSS) is not included, the FOR-
WARD command has the effect of extending the length of the idinfo string
beyond the default length of 6 without ever doing pronoun forwarding.

7.6.2 Forwarding plural pronouns

The plural pronouns THEY , THEM and THEIR are only replaced if the forwarded
actor is compound. These rules, while somewhat conservative, is quite effective at
handling pronoun references across sentences in Reuters. The additional command

FORWARD: THEY

deactivates this rule, so that plural pronouns obey the same rules as singular pronouns.
This is useful if you have a number of actors (e.g. political parties) who are plural.3

This command can occur anywhere in the file; it does not need to follow the original
FORWARD command.

3At the present time there is no simple way to designate an actor as being a plural; a future
version of KEDS will probably correct this. The PLURAL command only works with common
nouns (although intelligent use of PLURAL can take care of many cases). A complicated way
to do this would involve assigning a bogus compound code

OPPOSITION PARTIES [ALBOPP/XXX]
and then filtering out all of the records with XXX as actor or target.
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7.7 SOURCE: pattern | [code]
TARGET: pattern | [code]

The SOURCE and TARGET commands provide additional default search patterns
that look for actors associated with specific words, or provide a default code for the
source or target. These are used only if the default search for actors before and after
the verb has failed.

Examples:
SOURCE: $ SAID
TARGET: WITH +
TARGET: TO +

A SOURCE or TARGET pattern must contain a $ or + token. Multiple pat-
terns can be specified using multiple SOURCE/TARGET commands, and these
are searched in the following order:

1. All actors in the sentence are checked in left to right order. The actor will anchor
the pattern match at the location of the $ or + token.

2. Using this anchor, the patterns are checked in order of length, with the longest
pattern checked first.

3. Unless the SET:IGNORE CONJUNCTIONS=TRUE option has been
used, the pattern must match within the conjunction-delimited clause containing
the actor.

7.7.1 Default Codes

If a bracketed code is specified after SOURCE or TARGET,

TARGET: [WORLD]
SOURCE: [USA:GOV]4

it will be used to generate a default source or target code even when no identifiable
actor or agent can be found associated with the verb. Effectively, the default code
replaces the missing code ***. This is useful in two circumstances:

• It will sometimes allow the coding of abbreviated, syntactically incomplete sen-
tencesfor example chronologies or direct quoteswhere the subject or object is
implied rather than explicit.5

• When you are using KEDS to code only verb phrases and are not interested in
sources and targets.

Default codes that refer to specific actors – as opposed to special codes that are only
used in the context of a default – will probably substantially increase the number of

4This example includes an implicit agent in the code.
5See the discussion in Gerner, et al. 1994.
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incorrectly coded events; it is generally a good idea to make the default codes distinct
(e.g. SRCDEF, TARDEF) so that you know they have been assigned by the default
procedure rather than through regular coding. As noted earlier, assigning a default
source will guarantee that the first verb in each clause (or the sentence) is coded.
English words that look like verbs may actually be nouns or adjectives so coding that
uses a default source is less likely to identify the actual verb in a clause or sentence.

7.8 PREP, TITLE and PLURAL

As discussed in the Parsing chapter, the words in the <prep>, <title> and <plural>
classes are used by the KEDS parser. Words in the <plural> class affect the deref-
erencing of the pronoun THEY, words in the <prep> class are used to determine the
location of events when the PLACE facility is used, and <title> are used to reduce
two actor references to a single reference. These have the same format:

PLURAL: string
PREP: string
TITLE: string

Unlike the lists in the .Classes file, these commands have only one phrase per com-
mand. These commands are equivalent to setting the words using a <class>= com-
mand n the .Classes file (and are a vestige from versions of KEDS that did not have
the CLASSES command) but may occasionally allow the .Classes file to be skipped.

Example
PREP: IN
PREP: IN THE
PREP: FROM
TITLE: PRIME MINISTER
TITLE: PRESIDENT
PLURAL: MILITIA
PLURAL: POLICE

Note: These can also be defined using the .Classes file, and they are
saved in the appropriate class statement whenever the .Classes file is
saved when exiting the program. Because of this, if you are using both
these statements and a .Classes file, you’ll get a series of alert messages
indicating that the word has already been assigned a type. The way
around this is to just make the assignments in the .Classes file if you are
using classes.

7.9 COMMA

This command sets the minimum and maximum length of comma-delimited nonre-
strictive clauses that are eliminated before coding. The syntax is
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COMMA: MIN=<minimum value> MAX=<maximum value>
{EMIN=<minimum value> EMAX=<maximum value>}
{BMIN=<minimum value> BMAX=<maximum value>}
where the values are the number of words between commas, or between a comma and
the end of a phrase.

The BMIN/BMAX limits are used only on phrases at the beginning of the sentence
and the EMIN/EMAX limits are used only on phrases at the end of the sentence.
If BMIN/BMAX and EMIN/EMAX are not specificed, EMIN/EMAX are set to the
same values as MIN/MAX and BMIN/BMAX are set to their defaults (i.e. inactive).

The defaults are

BMIN = 255 BMAX = 0
MIN = 2 MAX = 2
EMIN = 2 EMAX = 10

The default BMIN/BMAX settings cause the first comma-delimited phrase to never
to deleted.

This feature can be turned off for all phrases using the command

COMMA: OFF

When this command is used, all of the text – including the material in comma-delimited
clauses – is checked for events. This will usually substantially change the coding. To
code from the nonrestrictive clauses only when no events were found in the regular
text, use the SET: CODE NONRESTRICTIVE=TRUE command.

Example
COMMA: MIN = 1 MAX = 8 EMIN=3 EMAX=10
COMMA: OFF

Note: Setting BMIN/BMAX to an active combination such as the MIN/MAX
defaults [2,10] will often result in most of the sentence not being coded.

7.10 OMIT

The default delimiters for indicating text that should not be coded are /*...*/; these
are similar to the “comment” delimiters used in programming languages. Up to three
additional sets of omit delimiters can be specified using the OMIT command. The
syntax of the command is OMIT followed by the two delimiters, separated by at least
one space.

OMIT: [�]
OMIT: (*�*)

(� = the blank character)

OMIT delimiters can contain up to three characters each.
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The typical use of OMIT delimiters is to excise non-language material that shouldn’t
be coded. For example, the event chronologies in the Journal of Palestine Studies
have square brackets around information concerning the original source of the event;
by designating [ ] as delimiters, this information will automatically be excluded

/* To prevent demonstrations commemorating Fateh’s

first operation,*/ Israel imposes indefinite

curfew on Occupied Territories [WP, LAT 1/2].

In human-assisted coding, adding delimiters allows parts of a sentence that will cause
errors when coded to remain in the text for purposes of reference without affecting the
coding. This is useful if one will be experimenting with multiple coding schemes and
therefore going through the same set of texts on multiple occasions. In the example
above, the second clause of the text contains the event; by eliminating the first clause
and the comma, the remaining text will be coded correctly.

Note: If an opening omit delimiter is not followed by a closing delimiter,
no text following the opening delimiter will be coded. This feature may
not be maintained in future versions of the program, so please balance the
delimiters – each opening delimiter should have a corresponding closing
delimiter. A closing delimiter occurring before an opening delimiter has
no effect on the coding.

7.11 SAVE

KEDS has an automatic save feature that prompts you to save the files after a specific
numbers of changes to the verbs, actors and classes/rules lists. (You still have the
option of not saving them despite the program prompting you). The default number
of changes is 16 but it can be changed using the SAVE command. The syntax is

SAVE: VERBS=<value> ACTORS=<value>
RULES=<value>

where the values are the number of changes (add, change or delete) between prompts.
Each part of the command is optional; if it is not present the default value will be
used.

The command

SAVE: OFF

turns off the feature.6

6Strictly speaking, OFF doesn’t actually turn off the feature but sets the parameters at a
value of 64: Knowing the possibility of unexpected crashes of the operating system (or even
KEDS – it can happen even now!), to say nothing of the effects of power failures, in good
conscience we can’t let anyone enter that many changes without at least reminding them to
do a save...
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Example
SAVE: VERBS = 12 RULES = 4

7.12 Complexity Filter

The COMPLEX command defines the conditions under which a sentence is consid-
ered too complex to code. By default all options are inactive except DISCARD and
COMPLEX. When a complex text is found, the program takes the following actions:

In autocoding mode: By default, the text is diverted to a .complex file that can be
later coded using machine-assisted human coding. If the NOSAVE option is used, the
record is skipped and no file is written.

In normal mode: No events are coded and the message Complex text is displayed.
The Modify/New Event menu option can be used to create events.

The COMPLEX command has the following options:

Parameter Condition

VERBS[n] Diverted if text contains n or more verbs
ACTORS[n] Diverted if text contains n or more actors
PRONOUNS[n] Diverted if text contains n or more pronouns
CONJ[n] Diverted if text contains n or more conjunctions
COMMA[n] Diverted if text contains n or more comma-

delimited nonrestrictive clauses
LATEVERB[n] Diverted if there no verb is found within n words of

the beginning of the sentence. If LATEVERB is
active, a text will also be diverted if it contains no
verb.

COMPLEX[n] Diverted if text contains n or more phrases with
complex codes [+++]. Default = 1.

NOACTPRIOR Diverted if no actor occurs prior to the first verb
NOACTAFTER Diverted if no actor occurs after the first verb
NOVERB Diverted if there is no verb
NOSOURCE Diverted if there is no source
NOTARGET Diverted if there is no target
NOEVENT Diverted if there is no event
EXPLAIN Inserts an explanation of why the source was

diverted into the output file inside /*...*/ delimiters;
the program also displays this explanation on the
screen after the Complex text message when not
autocoding

NOSAVE Do not save the complex files to a .complex file when
autocoding.

DISCARD[n] Do not code text if contains n or more phrases with
discard codes [ # # # ]. Default = 1. Unlike
COMPLEX[n], this option does not divert text to the
.complex file.
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The text is diverted if any of the conditions listed in the COMPLEX command are
met. The first six commands require a number in the brackets; there are no default
values, and a value of zero indicates that the condition is not active. The last seven
are Boolean; if they are present the condition is checked; otherwise it isn’t. As noted
above, text will also be diverted to the .complex file (or skipped if the NOSAVE option
is used) if it contains a phrase that has a complex code +++

Example
COMPLEX: VERBS[5] ACTORS[8] LATEVERB[8] NOVERB
NOACTPRIOR EXPLAIN

Note: Null-coded actors and verbs that are null-coded and have no pat-
tern are converted to type NULL and are not considered in the evaluation
of complexity.

7.12.1 Setting Complexity Conditions using Rules

Rules can be used to determine complexity by combining a rule with a string that is
assigned the complex code. For example, this construction:

In .Classes
˜ {KING|SADDAM} HUSSEIN ˜ {JORDAN|IRAQ} -> XELPMOC

In .Actors
XELPMOC [+++]

will divert to the .complex file any text containing a reference to HUSSEIN that does
not also contain a reference to KING/SADDAM or JORDAN/IRAQ. This allows
complicated definitions of what constitutes a case that meets the complexity criterion.

7.13 PAUSE

This command re-initializes the options in the Pause When menu option:7

PAUSE:<ALWAYS | CONTAINS | MISSING>
<SOURCE><TARGET><EVENT>
<COMPLEX>

The PAUSE command sets the conditions under which KEDS pauses before coding
the next record, giving you the option of recoding. This is useful is one is dealing with
source material that contains irrelevant material such as purely internal events, when
you only want to look at the text when KEDS has not found any events, or when you
only want to stop to code complex text.

7If this command is not used, the options remain at whatever settings were during the
previous coding session. This command – and VALID – are useful if you want to be sure
that the options are at the values you want them to be even if someone else has been using
the project file.
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ALWAYS, CONTAINS and MISSING control pausing based on the source-event-
target coding. The three possibilities are:

Always

KEDS pauses after coding each event; this is the default.

Contains

Pause when the coded text contains all of the listed items Source, Target, and
Event. This option is typically used for filtering in machine assisted coding to bypass
sentences that contain nothing of interest. Note that if you are only interested in
verb phrases (“events”) and not actors (for example if you are using KEDS to code
something other than event data...), sources and targets can be set to default values.

Missing

Pause if the coded text is missing any of the listed items. This option is typically used
in machine assisted coding to fill in missing information.

Note: Contains acts as a logical AND while Missing acts as a logical
OR in this selection. If the input contains a discard phrase, it is always
skipped if the Contains or Missing options are active.

Complex causes the program to pause whenever complex text is found; this acts as
a logical OR with the code-related options.

Example
PAUSE: CONTAINS SOURCE EVENT
PAUSE: MISSING TARGET COMPLEX

7.14 VALID

This command re-initializes the options in the Valid Event menu option:8

VALID: <SOURCE><TARGET><DISPLAY>

VALID sets the conditions for whether an event is considered valid and written to the
.events file. The default condition requires both a source and a target, but either of
these requirements can be changed using this command (or using the Options/VALID
menu option); the default condition also shows invalid events.

The validity condition is true if an event has an non-null code for the actor (source or
target). If agents are being coded, either the actor or the agent must be non-null.

If DISPLAY is present in this command, the DISPLAY/Show Invalid Events menu option
is checked (active), otherwise it is not checked.

8As with PAUSE, these setting are preserved from the previous coding session if this
command is not used.
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Example

VALID: TARGET DISPLAY Valid events must have a target and
may or may not have a source.9

Show Invalid Events is checked so
invalid events will be displayed.

VALID: SOURCE TARGET Valid events must have a source and
target. Invalid events will not be
displayed.

VALID: SOURCE Valid event must have a source and
may or may not have a target.
Invalid events will not be displayed.

VALID: Neither a source nor target is
required for a valid event.

7.15 AUTOLOG: ‘file name’

The AUTOLOG command specifies a file that will be used to maintain a record of
all of the autocoding sessions: this is useful if you are coding a number of different
text files and need to keep track of when and how the various files were coded.

The autolog file is of type text and tab-delimited, so it can easily be read into a
spreadsheet or database program. It records the following information

• date of the autocoding session

• time the autocoding session was finished

• .text file coded

• number of records coded since the .text file was opened10

• number of events coded since the .text file was opened

• time required for coding

• coder ID

• .project, .verb, .actors, .classes and .options files used

The autocode file is cumulative: results from the current autocode are appended to
those of earlier coding sessions. The autocode file does not have to be unique to the
project: different projects can use the same file.

Example

AUTOLOG: ‘REUTER80-95.AUTO’

10In other words, the “Records coded” statistic from the events window. If any manual
coding or other autocoding sessions were done earlier, this will be included in this statistic
and the “number of events” statistic. The Autolog file is designed to record the autocoding
of entire files, where this is not an issue.
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7.16 VERIFY: format string

The VERIFY command was developed to assist in the debugging of KEDS but might
be of use in maintaining the consistency of dictionaries over time. The command does
an automatic comparison of the actual codes to expected codes and pauses whenever
a difference is detected.

To do a verfiy, specify the codes that you are interested in checking in a format string
(described below in the Formatting Output chapter) ; the code fields must be blank
delimited.

Each record that is to be verified should be followed by “verify strings” with the
following format

1. First character in the line is { and a } occurs after the final code. Anything
after the } will be ignored; this can be used for comments;

2. Coding fields are / (slash) delimited. Consecutive slashes (e.g. //) mean that
the field should be ignored in this record

3. {˜ means that all subsequent verify strings should be ignored

4. There should be as many verify strings as the event records you expect to find
(unless you use {˜ } to bypass records ) and the verify strings should be in the
same order as the events.

When the VERIFY option is active, the program will pause whenever there is a dis-
crepancy between the verify string and the coded events. Blanks are trimmed from
the code strings before the comparison is made.

Example11

VERIFY:SOURCE TARGET EVENT[3]

890401 PATMATCH

Thirteen Palestinians were test1 edf anchored by Israel

and arrived in Syria on Sunday next ^/

{PAL/ISR/PA2} should *not* code PA5

{SYR/***/PB1}

11Yes, this is what KEDS verification source texts look like...



Chapter 8

CLASSES, COMPOSITE
PATTERNS, AND RULES

8.1 Purpose

KEDS was originally designed as a simple parser working with the subject-verb-object
(SVO) structure of English sentences, a small number of grammatical rules and a large
number of patterns. As we accumulated experience with the program we encountered
a number of situations where a sentence was almost, but not quite, in SVO form,
and could be converted to the SVO form by the application of a general rule. We also
noticed that general rules could be used to resolve some situations of agent assignment
and conjunctions.

While some grammatical rules have been built into the program, KEDS also allows new
rules to be specified using two formal grammatical structures: regular patterns and a
transformational rules.1 These facilities are embedded in three features of KEDS:

Classes: These are sets of words that can be used in patterns. These operate in a

1In linguistics, the term “transformational” has changed over time. I’m using the term in
the sense that it was used when Chomsky originally defined categories of grammars: a rule
that allows multiple tokens on both sides of a replacement operator. As such a KEDS rule
is a step more elaborate than the context-free grammars usually encountered in the syntax
of computer languages (e.g. Backus-Naur form; Prolog), which only allow multiple tokens
on the right-hand-side of the substitution. Context-free grammars, while more familiar in
computer science, are insufficient to handle many of the common transformations found in
natural language, such as the reversal of subject and object in English passive-voice.

If you are accustomed to working with grammatical specifications, note that the KEDS rule
notation is the reverse of that usually found in grammars: the right-hand-side replaces the
left-hand-side rather than the left-hand-side replacing the right-hand-side in notations such
as “LHS::= RHS1|RHS2.” The LHS− >RHS notation follows the ordering of the typical
search-and-replace command found in software and has proven more intuitive for the average
user of KEDS, who tends to be neither a linguist nor a computer scientist.

74
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fashion similar to verbs, actors, agents, pronouns and other word types recog-
nized by KEDS. Classes typically consist of sets of words that are equivalent
either from the standpoint of event coding or in parsing.

Composite patterns: These allow alternative options in a pattern match, as well as
patterns within patterns.2

Rules: These allow one pattern to be replaced with another pattern.

Classes, composite patterns, and rules are the “bells and whistles” of KEDS – the
program works fine (and in fact did for several years) using only simple patterns and
some standard English-language syntactic transformations. However, if you find that
you are creating a number of similar patterns to deal with a general problem that
could be solved with a transformational rule, you should consider creating such a rule.
General rules using the standard KEDS classes such as <verb> or <agent> can
anticipate situations that are not incorporated into the fixed lists of verb phrases.
Like verbs and actors, classes and rules can be edited while the program is running,
the new constructions tested, and then saved.

8.2 Defining classes and rules

Classes and rules are read from a file specified in the CLASSES: command in the
.Options file. The format of the command is:

CLASSES: ‘file name’

Example:

CLASSES: ‘MidEast89.classes’

The file name should not contain a single-quote but otherwise can be any legal Mac-
intosh file name.

The structure of the class file is:

CLASSES
<class name> = word1 word2 word3 .... wordn

<class name> = word1 word2 word3 .... wordn

...
<class name> = word1 word2 word3 .... wordn

RULES
patternt { -> | => } patterns

patternt { -> | => } patterns

...

2The KEDS complex pattern specification appears to be missing the “iteration” (*) oper-
ator found in regular expressions such as those in Unix’s grep. However, iteration is implicit
in KEDS’s patterns because they automatically skip anything between pattern elements not
connected with an underscore. The regular expression’s zero-or-any-number-of-occurrences
operator is accomplished with a space in a KEDS pattern.
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patternt { -> | => } patterns

˜ FINISH <any information>

where

class name = an identifier consisting only of the characters A to Z

wordi = any string of non-blank characters where the first two characters are between
‘@’ and ‘ ’ in the ASCII sequence. Words are separated by at least one blank.

patternt, patterns = any pattern

In addition, any line where the first two non-blank characters are “˜ ˜ ” will be treated
as a comment and ignored.3

Example:

CLASSES
<conjprep> = AS � BY � WHILE
<sourceverb> = REPORTED BY � ACCORDING TO
˜ ˜ <tobe> will be used in the passive voice rule
<tobe> = IS � WAS � WERE
RULES
˜ ˜ convert some prepositions to conjunctions
<conjprep> <actor>=><conj><actor>
˜ ˜ reverse actors in passive voice
<actor1><tobe> <verb> BY <actor2> − ><actor2><verb>
<actor1>
˜ FINISH

� = blank character

8.3 Classes

A class list is simply the class name inside < ... > followed by a space-delimited list
of the words (or phrases consisting of words connected with “ ”) in the class. A word
can belong to more than one class, and a maximum of 243 classes can be defined.4

Class names and words can be entered in lower case but will be shifted to upper
case before matching. Unlike most KEDS statements, the CLASS statement can be
indefinitely long (for example, more than 255 characters) though individual words and
phrases are limited to 80 characters. A class definition ends with a <Return> (ASCII
13).

Multiple class statements can be used to define a class; their contents will be accumu-
lated in the class definition. In other words

3At present, comments are not carried forward when the classes file is rewritten after classes
or rules have been changed using the MODIFY menu.

4More generally, the total of the standard classes and the defined classes must be less than
or equal to 255.
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<claa> = item1 item2 item3
<clbb> = item1 item6 item7
<claa> = item4 item5

has the same effect as

<claa> = item1 item2 item3 item4 item5
<clbb> = item1 item6 item7

This facility is useful if you are temporarily modifying a class dictionary or maintaining
several dictionaries that have a great deal of overlap.

Note: Because longer phrases are matched before shorter phrases, stem-
ming can cause unintended (and generally unpleasant) results if a full
word is used in one class and a stem is used in another. For example, if
the .Actors file contained

PALEST [PAL]

and the .Classes file contained

<ARAB ACTORS> = PALESTINIAN SYRIA EYGPT... then an oc-
curence of “Palestinian” or “Palestinians” always would be classified as be-
longing to the class <ARAB ACTORS> but not to the class <ACTOR>.
This occurs because the dictionary matches “Palestinian” to the class en-
try PALESTINIAN, but having made this match, it never gets to the
shorter stem entry PALEST. To avoid this problem, use exactly the same
phrases in all of the files.

8.3.1 Standard Classes

These classes are always initialized and can be used in patterns or rules even if no
additional classes are defined.

<ACTOR> <AGENT> <VERB>

<PRONOUN> <CONJ> <PREP>

<TITLE> <PLURAL> <COMMA>

<NUMBER> – see discussion below

<CLAUSE> – used to anchor a pattern to the beginning or end of a clause

<TEXT> – used to anchor a pattern to the beginning or end of the text

8.3.2 <NUMBER> Class

Any set of characters beginning with a digit is automatically assigned to this class.
Additional words can be added using to the class file, e.g.
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<NUMBER> = one two one hundred...

Words in the <NUMBER> class can also be assigned default numerical values that are
used when computing numeric issues (discussed below); these follow the word inside
square brackets, e.g.

<NUMBER> = one [1] two [2] one hundred [100] hundreds [322]

A default value can be up to 12-characters in length; only positive integers are allowed
(i.e. no negative numbers, no decimals). The numerical values are optional – if an
explicit value is missing, the numerical value of the word is set to zero

8.4 Composite patterns

Composite patterns can contain sets of alternative matches and the negation of a set
of matches; they can be used anywhere in KEDS that a pattern is used. Alternatives
and negative are done using the following notation:

8.4.1 Set of alternatives

{ pattern1| pattern2| ... | patternn }
This will match a string containing

pattern 1 OR pattern 2 OR ... OR pattern n.

Unless an alternative pattern ends in “ ”, it is assumed to end in a space – in other
words, an indefinite number of words can be skipped before matching the next element
in the pattern.

To force the element following a set to be consecutive, put an underscore after the closing bracket:5

{WAS|IS|WILL BE} HERE

is equivalent to

{WAS HERE|IS HERE|WILL BE HERE}

8.4.2 Negation

˜ {pattern set}
5More generally, appending underscores to the elements of the set

{WAS |IS |WILL BE } HEREwill not force the HERE to be consecutive because the “}”,
rather than the underscore of the matched element in the set, is the pattern element immedi-
ately prior to HERE.
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This will match anything except pattern set : the pattern fails if any of the subpatterns
in the pattern set are encountered. Note that the ˜ must be followed by a set enclosed
by {...}. That set can contain strings, classes or patterns. When a pattern fails to
match, the search continues from the point where the previous match ended.

A negative set should not end in “ } ” because an element cannot be consecutive to
a failed match. If this is encountered, it will be ignored.

Examples

- SAID WOULD * {<ACTOR> | <AGENT> | <PRONOUN>} - * TO ATTACK
˜ {UNITED NATIONS|NATO FORCES|UNPROFOR}

Note: In order to create an “everything in class <C> except {X}” con-
dition, use

˜ {X} <C>

This pattern will first try to match {X}, and if {X} is present, it will
fail. If {X} is not present, the system will then try to match <C>. For
example

SAID
- ˜ {<MEDIASOURCE>} $ * [024]

ATTACKED
- ˜ {UNO|NATO} * <ACTOR> [223]
- {UNO|NATO} * <ACTOR> [224]

In the first example, if there is an actor prior to SAID that is not in
the class <MEDIASOURCE>, an event will be generated with a code
024; otherwise no event will be coded from the verb SAID. In the second
example,

NATO ATTACKED BOSNIAN SERB POSITIONS

would be coded 224, while

CROATIAN FORCES ATTACKED BOSNIAN SERB POSITIONS

would be coded 223.

8.4.3 <TEXT> and <CLAUSE>

The <TEXT> and <CLAUSE> tokens can be used to “anchor” a pattern to the
beginning or end of the text or to the beginning or end of the current conjunction-
delimited clause. These only work when followed by a underscore at the beginning of
a pattern (<TEXT> , <CLAUSE> ) or preceded by an underscore at the end of
a pattern ( <TEXT>, <CLAUSE>); in any other location they will always cause
the pattern to fail.

Examples
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<TEXT> $ * Only matches a source if it is the first actor
in the text

<CLAUSE> $ * Only matches a source only if it is
immediately preceded by a conjunction or
is the first actor in the text

SAID <ACTOR> <TEXT> Matches if the actor is the final word (or
words, when the actor string contains
underscores) in the text

8.5 Rules

A rule searches the source text for a target patternt . If the pattern is found, replaces
all of the text between the first and last words matched by the pattern with the
replacement patterns. Rules are applied after classes have been assigned to the words
in the text and after REPLACE operations but before any of the standard syntactic
operations (e.g. agent assignment and pronoun dereferencing) are done. Any literal
strings are checked against the dictionary and are assigned the appropriate word type
if they are found.

The rules are applied in the order they occur in the .classes file. There is no way to
change this ordering from inside KEDS, but it can be done with an editor.

The left-hand side of a rule (before the -> or =>) can be a pattern of any complexity.
The right-hand-side (following the -> or =>) can have only classes and literal strings:
it cannot contain alternative sets or not operators. Each side of the rule can contain
a maximum of 255 characters.

The patterns used in rules cannot contain the *, $, + and % tokens that are used in
verb phrases. Use the <VERB> class for * and the <ACTOR> class for $ and +.
Rules are applied before compound actors are coded, so there is no equivalent to the
% token.6

Unless a replacement class is indexed [see next section], classes are replaced in the
same order that they were found. For example the rule

<actor><verb><prep><actor> -> <actor><prep><verb><actor>

applied to

Yelstin stayed in his plane and did not meet with the Irish prime minister

would produce

Yelstin in stayed Irish prime minister

If there is a class in the replacement pattern that does not correspond to a word in
the target pattern, the literal

6Unless you write an equivalent using a rule, which is possible in the system.
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ˆ <class name>

is inserted in the replacement text.7

8.5.1 Indexing

Classes in a pattern can be indexed by appending a number between 1 and 31 to the
class name. This allows a pattern to keep track of where various words occurred in
a match and then re-arrange their order in the replacement pattern. For example,
applying the rule for handling passive voice in English

<actor1><tobe><verb> BY <actor2> -><actor2><verb><actor1>

to the sentence

ISRAEL WAS ACCUSED BY SYRIA

will produce the assignments

<actor1> = ISRAEL <actor2> = SYRIA

and the result

SYRIA ACCUSED ISRAEL

Because substitution is anchored at the beginning and end of the match, any words
that were skipped over in the match will be dropped in the replacement process. For
example, applying the passive voice rule to

YESTERDAY THE ISRAELI PRIME MINISTER WAS ACCUSED BY SYRIAN RADIO

will give

YESTERDAY THE SYRIAN ACCUSED ISRAELI RADIO

This substitution has changed the meaning of the sentencealbeit while preserving
correct English syntaxbut the source and target would code correctly.8

If an indexed class appears in the substitution pattern but not assignment has been
made in the target pattern, it is skipped. This usually occurs when the target pattern
has a set of alternatives.

7Except for the <comma> class, where “ , ” is inserted.
8Note that in this example, correct syntax is maintained only because ISRAELI and SYR-

IAN can be used as either adjectives or nouns. As with most ambiguous word classes, this
can be a liability rather than an asset: if PRIME MINISTER and RADIO were agents the
rule would result in an incorrect agent assignment as well. The more complete rule

{<actor1><agent1> | <actor1>}<tobe><verb> BY {<actor2><agent2> | <actor2>}
− >
<actor2><agent2><verb><actor1><agent1>

would solve that problem.
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8.5.2 Multiple applications of a rule

Rule may be applied in either of three modes, which are governed by the replacement
operator:

− > the rule is applied only once to the text.

=> the rule is applied multiple times in a sentence until it fails. Each
new application begins after the end of the previous application.
This allows a rule to be applied in multiple clauses but not to
modify text that it previously modified.

>> the rule is applied multiple times until it fails; each time the rule
is re-applied it starts from the beginning of the sentence, so a rule
can transform a part of a sentence that it previously transformed.9

The “>>” operator can result in an infinite loop: for example

<PREP><ACTOR>>><COMMA><PREP><ACTOR>

would convert

in Syria

to

,,,,,, <infinite times> ,, in Syria

Similarly,

<actor1><verb><actor2>>><actor2><verb><actor1>

would continue swapping the positions of the two actors indefinitely.

In well-tested dictionaries, infinite loops are usually due to unanticipated constructions
in the text that cause otherwise innocuous rules to go awry. To prevent such occurences
from causing the program to stop coding, replacement is stopped after the total number
of times the rules are applied is equal to twice the number of words in the original
text. The program will beep when this occurs. An infinite replacement loop is always
obvious if you are looking at the parsed display; if you are autocoding and there are
unexplained beeps, this may be the explanation. An infinite replacement may cause
other legitimate rules not to be applied, so infinite replacement rules should be avoided
as much as possible.

8.5.3 Rule Loops

Rules can be clustered into loops of repeated rules by using ˜ REPEAT and ˜ END
commands. A loop is repeated until all of the rules within the loop fail to match, or
until the total number of times the rules are applied is equal to twice the number of
words in the text. Loops can be nested up to 8 levels deep. For example, in the loop
structure
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rule1

rule2

˜ REPEAT
rule3

rule4

˜ REPEAT
rule5

rule6

˜ END
rule7

˜ END
rule8

rule9

the outer loop would apply rule3 and rule4, then repeat rule5 and rule6 until both
had failed, then apply rule7, then go back up to rule3. When all of the rules in the
outer loop had failed, rule8 would be applied. The rules

GHI -> RST
˜ REPEAT

DEF -> UVW
˜ REPEAT

ABC -> XYZ
XYZ -> 1XYZ

˜ END 1XYZ -> 2XYZ
˜ END
JKL -> PQR

convert

DEF ABC DEF ABC GHI JKL MNO GHI JKL

to

UVW 2XYZ UVW 2XYZ RST PQR MNO GHI JKL

The indenting of ˜ REPEAT loops is optional but improves readability; when rule
loops are saved they are automatically indented.

8.6 Notes on Program Speed

Classes are actually more efficient to match than are the text strings found in verb
phrases and issues, since all members of a class are stored in the program’s dictionary
and the assignment is noted when a word is classified. A very large number of classes
might slightly slow the dictionary search, but generally this process is quite efficient.

Composite patterns are generally as efficient as simple patterns – the patterns are
matched left-to-right with no backtracking and the time required to match a pattern
is roughly proportional to its length. Matching will be slightly more efficient if the parts



CHAPTER 8. CLASSES, COMPOSITE PATTERNS, AND RULES 84

of the pattern that are most likely to be matched are placed first in an alternative set:
{SAID | AFFIRMED | ELUCIDATED} will probably be processed somewhat more
quickly than ELUCIDATED | AFFIRMED | SAID , at least if one is coding Reuters.

Rules involve pattern matching on all of the text and therefore will have some effect
on the speed of the program if you use a large number. To determine whether this is a
significant factor, auto-code a large set of data with and without the rules and compare
the speeds reported in the autocoding dialog box after the coding is stopped.10

8.7 Examples

8.7.1 Passive Voice

The granddaddy of all rules is the English-language passive-voice transformation. The
safest version of this looks like:

<TOBE> = HAVE BEEN IS WAS WHEN WILL

<ACTOR1> <TOBE> <VERB> BY <ACTOR2> − >
<ACTOR2> <VERB><ACTOR1>

The one potential problem with this formulation is that the actor must come immedi-
ately before the <TOBE> verb, which will miss cases where the actor identification
is actually an adjective (e.g. ISRAELI PRIME MINISTER). By eliminating the un-
derscore after <ACTOR1>, the rule can be made more general, but at the risk of
making incorrect applications. For example the rule with <ACTOR1> <TOBE>...
applied to

970130 REUT-0024-01

Six European countries formally agreed on Thursday to increase the number of

observers in the West Bank town of Hebron , most of which was handed over to

Palestinian rule by Israel two weeks ago.

reduces the sentence to

Six Israel agreed European two weeks ago.

8.7.2 Using rules and classes in attribution statements

One of the most common problems in news reports are attributed statements

Kuwait newspapers reported that the Saudi foreign minister plans to visit the

United States...

10When autocoding, almost half of the time is taken up by reading and writing data, and
basic operations such as assigning classes to the individual words in the text, so changes in
the coding process itself often have relatively small effects on the speed of the coding.



CHAPTER 8. CLASSES, COMPOSITE PATTERNS, AND RULES 85

If one wishes to code attributed statements as events – which would be consistent with
the fact the statements made by Reuters are being coded as events – then sentences
such as this cause a problem: The source of the statement (Kuwait) rather than the
source of the event (Saudi Arabia) is the first actor in the sentence, and therefore
coded as the source, so even if REPORTED has a subordinate code, one gets the
incorrect event:

Conveniently, Reuters usually puts attribution at the end of a sentence, where this
problem does not occur. This is not true of all newswire sources, however. To deal
with attribution at the beginning of a sentence, one could use the following classes
and rules:

<attrverb>= SAID REPORT CLAIM

<newsource>= NEWS RADIO TELEVISION

<actor1> <source> <attrverb> <actor2> <verb> <actor3> ->
<actor2> <verb> <actor3>

Under these rules, the source text given above would be converted to

Saudi plans to visit United States...

and coded

SAU <plans to visit> USA

8.7.3 Compound Verbs

Reuters occasionally uses compound verbs such as “intercepted and detained” in the
example below:

970108 REUT-0008-01

A Croatian naval patrol intercepted and detained an Italian fishing boat in

the northern Adriatic for illegal fishing in its territorial waters, the state

news agency HINA said on Wednesday

These cause a problem when coding by clause because the target search will not cross
the conjunction AND . The following rule will shift the target back in front of the
conjunction:

<VERB1> <CONJ> <VERB2> <ACTOR1> ->
<VERB1> <ACTOR1> <CONJ> <VERB2> <ACTOR1>

This converts the text about to

A Croatian naval patrol intercepted Italian and detained an Italian fishing

boat...
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FORMATTING OUTPUT

9.1 Purpose

KEDS provides a great deal of flexibility of formatting of the output on the screen
and in the output text file; this is particularly useful if you intend to use the output
in a database, spreadsheet or statistics program. The default formats used by the
program are sufficient for most simple event data work, but if you are going to be
coding something more elaborate, you will probably want to customize the formats.

9.2 Formatting Commands

The format of the information written to the .events file and displayed in the event
window are controlled by the .Options commands

OUTPUT:format string

DISPLAY:format string

The format string is simply a list of the output variable names in the desired order,
separated with additional characters as needed. The format begins immediately after
the “:”.

86
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Variable names:

DATE Date

SOURCE Source

SOURAG Source agent

TARGET Target

TARGAG Target agent

EVENT Event code

CODEXT Event code text (set using a CODE: command)

PHRASE Phrase matched by event

NOTES Notes field (see below)

ISSUEk Issue (e.g. ISSUE3, ISSUE9, ISSUE0)

CODER Coder ID and date

IDINFO Record ID

OUTPUT only:

TEXT: Text (see below)

The variable names in these commands are case-sensitive SOURCE will be recognized
as a variable name but Source will be assumed to be a string separating variable
names. A maximum of 32 format elements can be specified, and the total length of
the format string must be less than 255 characters.

Blank characters are significant in formats! A blank in the format, even one separating
the variable names, will be interpreted as producing a blank in the output. Note also
that any misspellings of the variable names will be interpreted as strings between
variables. If you need to use the actual words EVENT etc., just use something else
(e.g. EVXNT) and do a global replace in an word processor. Lower case will also
work.

Note: If you incorrectly use the TEXT variable in the DISPLAY for-
mat, you will see the string #%TEXT%# rather than the actual text.
If for some reason the string #%TEXT%# is used in your format, the
text will be placed at the first occurrence of it (in other words, don’t use
#%TEXT%# in a format)
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9.2.1 Specifying the length of variables

If [n] is appended to the variable name – for example

SOURCE[6] EVENT[3] TARGET[6] CODEXT[20]

then the length of the variable is fixed at n characters. Unless the variable is a
numerical ISSUE, when the number of characters entered is longer than the length,
the final characters will be eliminated; if shorter, blanks will be added to the end of the
string to get the correct length. If no length is specified, the maximum code length of
12 characters will be used except for EVTEXT, PHRASE, NOTES and TEXT,
which are displayed at their full length.

Numerical issues (those with an OPTIONS=‘NUMERIC’ command) are right-
justified blanks or zeroes are added to the beginning of the number until it is the speci-
fied length Blank-filling is the default; zero-filling is done if the OPTIONS=‘NUMERIC
ZERO’ command was used. If the number is longer than the specified length, the left-
most digits are removed and the first remaining digit is replaced with a * to indicate
that it was truncated.

Note: This rule does not apply to the NOTES field; see the description
below.

Example

SOURCE = ISRMIL
TARGET = PALDEMO
EVENT = 221
Format: SOURCE[8]+PALDEMO[6]==>EVENT[2]
Output: ISRMIL��<tab>PALDEM==>22

9.3 Default formats

If no formats are specified, the following defaults are used:

DISPLAY:SOURCE[6]��TARGET[6]��EVENT[3]��(CODEXT[10])��PHRASE[30]
OUTPUT:DATE��SOURCE[6]��TARGET[6]��EVENT[3]��CODEXT

where �=blank. Note that the default formats show only 6-character codes for source
and target and 3-character codes for the event, rather than the 12-character maximum.

9.4 Inserting control characters in formats

When a format string is interpreted, the characters ˆ , +,/ and ! have a special
meaning:
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+ insert tab (ASCII 9)

/ insert carriage return (ASCII 13)

! insert line feed (ASCII 10)

ˆ + insert ‘+’

ˆ # insert ‘#’

ˆ / insert /

ˆ ! insert !

ˆ ˆ continuation (character combination occurs at the end of
the previous line and the beginning of the next line)

The continuation is used to link parts of a format string that occur on two consecutive
lines. The two-line construction

OUTPUT: This is the first part of the format,ˆ ˆ
ˆ ˆ this is the second

is equivalent to

OUTPUT: This is the first part of the format, this is the second

In a long format string, this facility allows you to break the command at points that can
be easily read rather than depending on the formatting of the text editor. Continuation
also allows the command describing the format to be longer than 255 characters (due to
the variable names) even though the format itself can be a maximum of 255 characters.

Examples of the use of the other special characters are given below.

9.5 NOTES

The NOTES field is designed to be used in machine-assisted coding to contain informa-
tion that can only be ascertained by a human coder. When the SET: NOTES=TRUE
command is used in the .Options file, a Notes box is shown in the event editing win-
dow. The program does not put any information in the box; the content must be
provided by the coder.

The display and output of the NOTES string is controlled by a special format string
where
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# insert next character from the string entered
by the coder

ˆ nnnˆ equivalent to nnn # symbols; nnn can be one to three
digits

ˆ , ˆ �, or ˆ / if this occurs at the beginning of the string, remove
commas, blanks or slashes before processing string.

This allows a coder to place delimiters between the fields in the NOTES string.

anything else insert that character

If there are more # characters in the format string than there are characters in the
string entered by the coder, blanks replace the # characters in the output.

The total length of the NOTES entry and the NOTES format string must be less than
254 characters.1

Example

Notes string: 1234567890

Format string: NOTES[##+##+ X##+#,###]

Output string: 12<tab>34<tab> �� X56<tab>7,890

Example

Notes string: 12/34/56/7890

Format string: NOTES[ˆ /##+##+$ˆ 8ˆ +#,###]

Output string: 12<tab>34<tab>$56� � � � �� <tab>7,890

9.6 TEXT

The TEXT field shows the text that was coded. Because the text is potentially very
long, and it is already displayed in the text window, this option can only be used in
an OUTPUT format string. The TEXT field can have the following formats

1The NOTES text entry field is set to accomodate about 16 characters. If you need
it substantially larger and know a Mac junkie who can use Apple’s ResEdit program, the
following patch will work:

1. Open DLOG/DITL resources #439 (“Edit Event”)

2. Vertically enlarge the DLOG box

3. In the DITL editor, select all of the “Issue” edit boxes (item numbers 12 through 21)
and move these down as a block, keeping their relative positions fixed.

4. Enlarge the Notes text edit box (item #11) and put it wherever you would like.

The event editing dialog should accomodate itself to these changes, repositioning the dialog
box and the Notes and Issues labels.
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TEXT Write the text as a single string with no
delimiters

TEXT[nn] Write only the first nn characters of the text

TEXT[nn:characters] Write the text in lines less than or equal to
nn characters in length, broken on words,
with the character string characters at the
end of each line except the last. The special
characters (+,/ and !) can be used; this
provides some flexibility in formatting the
source text to be compatible with other
software.

nn must be less than 255.

Examples:

Source text:

Iraq has concentrated nearly 100,000 troops close to the Kuwaiti border, more

than triple the number reported a week ago.

OUTPUT:TEXT[30]...+

Iraq has concentrated nearly 1...<tab>

OUTPUT:TEXT[50:!>>>]

Iraq has concentrated nearly 100,000 troops close <lf>
>>>to the Kuwaiti border, more than triple the number <lf>
>>>reported a week ago

9.7 Examples of complex formats

In the examples below, <lf>=line feed; <tab>=horizontal tab, �=blank. Due to the
formatting of this document, there are some physical line feeds in the examples where
these would not occur as <lf>s in the text written to a file.

Original source text:

891209ID0006� � � � �Reuters
Jordanian�riot�police�using�tear�gas�battled�Palestinian�demonstrators�
in�a�refugee�camp�near�Amman�on�Saturday�for�the�second�night�running,�
witnesses�said.
OUTPUT:DATE (IDINFO)/TEXT[40:/]/SOURCE SOURAG[3] TARGET
TARGAG[3]ˆ ˆ EVENT[3] ISSUE1[3] ISSUE2[1]//

891209��(ID0006)
Jordanian�riot�police�using�tear�gas� <lf>
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battled�Palestinian�demonstrators�in�a� <lf>
refugee�camp�near�Amman�on�Saturday�for� <lf>
the�second�night�running�,�witnesses� <lf>
said� <lf>
JOR�� � � � ��PLC� � ��PAL� � � � � � �DEM� � ��222� � ��REF� � ��8

OUTPUT:DATE+SOURCE+TARGET+EVENT[3]+CODEXT+TEXT[30]’

891209<tab>JOR� � � <tab>PAL� � � <tab>222<tab>NONMIL�DES
TR<tab> �Jordanian�riot�police�using�te

OUTPUT:DATE:+SOURCE[3](SOURAG[3])� ==> �EVENT[3]� ==> �TARGET[3](TAR
GAG[3])�+Phase:PHRASE[30]

891209:<tab>JOR(PLC)� ==> �222� ==> �PAL(DEM)<tab>Phas
e:BATTLED� � � � � � � � � � � � � � � � � � � � � � �

OUTPUT:DATE+SOURCE+EVENT+TARGET+NOTES[##+#+##+###]

891209<tab>JOR� � � <tab>222� � � <tab>PAL� � � <tab> �AB<tab>1
<tab>CD<tab>345

9.8 LABELS

The LABELS command can be used to set the heading labels that appear in blue in
the event window. The format of the command is

LABELS: label1+label2+...+labeln

where label1, label2, ..., labeln are the text labels for the variables, listed in the order
they occur in the DISPLAY command and separated by “+.” Except for the la-
bels, the header has the same format (including intervening text and the number of
characters displayed) as the DISPLAY.

If the LABELS command is not used, the heading defaults to the variable names.
If fewer labels are listed than variables are displayed, the remaining labels are set to
the defaults; if more labels are listed than variables are displayed, the remainder are
ignored.

Example

The commands

DISPLAY:SOURCE (SOURAG)� ==> �TARGET�(TARGAG)�:�:�EVENT[3]
LABELS: Source+Agent+Target+Agent+Evt

produces the heading label

Source(Agent)� ==> �Target�(Agent)�:�:�Evt
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9.9 Text File Output

If the command SET: TEXT FILE=TRUE is included in the .Options file, a
separate file will be produced that contains

DATE<tab>IDINFO<tab>TEXT

This file is identified with a .text suffix. The text record will be written to this file
once for each case where at least one event has been coded from the text. This file is
designed to be used with a relational database program to associate events with the
coded text and is an alternative to including the text with every event record (which
creates very large and redundant files).

9.10 Problems File Output

If the command SET: PROBLEMS FILE=TRUE is included in the .Options file,
a separate file will be created to save for later analysis problematic records identified
by the coder. This file is identified with a .prob suffix; the files are numbered according
to the coding session and are only retained when they contain the record of at least
one event. .probs records contain the original text, the parsed version of the text,
the coded events and any additional comments the coder might wish to add (see the
Modify/Comments menu option).

9.11 PANDA Formatting

If the command SET: PANDA FORMAT=TRUE is included in the .Options
file, the formatting defaults to an assortment of formatting conventions used by the
PANDA project. These are:

• The missing value code *** and the null code - - - are replaced with blanks in
the output file;

• At least one blank record is written for each source text, even if no events are
found;

• Actors with codes beginning with ‘7,’ ‘8,’ or ‘9’ cannot be assigned to the
PLACE variable [PANDA uses these for international organizations and other
non-territorial actors];

If not otherwise set by other .Options commands:

PANDA OUTPUT format:

DATE+IDINFO+SOURCE[6]+SOURAG[3]+TARGET[6]+TARGAG[3]+
EVENT[3]+ISSUE1[3]+ISSUE2[1]+ISSUE3[1]+ISSUE4[1]+ISSUE5[1]+
ISSUE6[1]
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PANDA DISPLAY format:
SOURCE[6]�SOURAG[3]� � �TARGET[6]�
TARGAG[3]���EVENT[3]���ISSUE1[3]�ISSUE2[1]�ISSUE3[1]�ISSUE4[1]�
ISSUE5[1]�ISSUE6[1]��CODEXT

PANDA ISSUE Titles:

Issue1 Title = ‘Place’;

Issue2 Title = ‘Issue’;

Issue3 Title = ‘Domain’;

Issue4 Title = ‘Contxt’
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AGENTS

10.1 Purpose

In some circumstances, it is useful to differentiate the agent responsible for an event,
for example distinguishing “Israeli soldiers,” “Israeli police,” and “Israeli settlers.”
“Agents” are typically improper nouns with associated codes:

AGENT: DISSIDENT [OPP]
AGENT: ELECTORATE [CON]
AGENT: EMIGRANT [REF]
AGENT: EMIGRES [REF]
AGENT: ENVIRONMENTALIST [ENV]
AGENT: ENVOY [EMB]
AGENT: FARMER [LAB]

KEDS can assign an agent to both the source and target; these fields are defined using
the OUTPUT and DISPLAY commands. This facility is activated by setting SET:
CODE AGENTS=TRUE in the .Options file.1

10.2 Defining Agents

Agents are defined using the AGENT command in the .Options file

AGENT: string [code]

See example above.

1KEDS versions 0.3 and 0.5 contained a very different AGENT facility designed to com-
pensate for implicit actor identification based on locations and interactions (e.g. POLICE IN

GAZA ARRESTED DEMONSTRATORS would use the location, Gaza, to identify “police” as Israeli
and “demonstrators” as Palestinian). This did not work particularly well and was largely
unnecessary in Reuters, so the facility was discontinued after version 0.5.

95
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10.2.1 Implicit Agents

An implicit agent can be associated with the actor. This is typically done with proper
names. The implicit agent causes an agent to be assigned to the actor even WHEN
no agent occurs explicitly in the sentence. The implicit agent code follows the actor
code, separated by a colon:

GEORGE BUSH [USA:PRES]
BOUTROS GHALI [UNO:SG]

Implicit agents can also be used in coded compounds:

PRESIDENT AND VICE-PRESIDENT [USA:PRES/USA:VPRS]

10.3 How Agents are Assigned

The program attempts to associate an actor to all agents found in the text, using the
following priority:

1. Implicit agents (e.g. GEORGE BUSH [USA:GOV])

2. <actor><agent> (e.g. FRENCH POLICE)

3. <agent><preposition><actor> (e.g. POLICE IN RANGOON)

4. an actor within ± 2 words of agent; the number of word can be adjusted using
the SET: AGENT SEARCH command

If none of the above conditions are found, the agent is assumed to an actor itself, and
is treated as such when identifying the source and target. In a statement like

Police fought demonstrators last night outside of the parliament, official

Polish sources reported

will produce the coding

*** POL *** DEM.

In this and most other instances the national identity of the agents can be determined
by information coded elsewhere in the sentence using a PLACE issue.

An agent that has been converted to an actor is called an implicit actor and is denoted
by italics in the parsed display of the text. The rule of not matching identical source
and target applies to [actor:agent] combinations, not just to actors alone.

Note: Implicit actors are detected in the parsing of syntactic compound
actors just as regular actors are, so

POLICE AND DEMONSTRATORS CLASHED

will form the compound POLICE & DEMONSTRATORS. KEDS does
not deal with the ambiguous form of compound agents is found in phrases
of the form:
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AMERICAN AND ISRAELI NEGOTIATORS

(= AMERICAN NEGOTIATORS AND ISRAELI NEGOTIATORS)

Assuming AMERICA is an actor, for KEDS this sentence is syntactically
equivalent to

JAMES BAKER AND ISRAELI NEGOTIATORS

and the extension of agent assignment would not be appropriate in the
second situation. If the text you are coding warrants the use of compound
agent assignment, use the rule

<actor1 > AND <actor2 ><agent>=>
<actor1 ><agent> AND <actor2 ><agent>

10.4 Displaying and Writing Agent Codes

Unless the SET: PANDA FORMAT=TRUE command has been used, the default
DISPLAY and OUTPUT formats do not include the agent codes. To change this,
include DISPLAY and OUTPUT commands in the .Options file.

10.5 Modifying the Processing of Agents

The treatment of agents is controlled by the following parameters that can be modified
using the SET command in the .Options file.

10.5.1 CONVERT AGENTS [default: TRUE]

TRUE: If an agent cannot be assigned to an actor, it is converted to an implicit actor
with a null identity.

FALSE: Unassigned agents are not converted to actors.

In Reuters text, this setting has a substantial effect on the assignment of sources and
targets.

10.5.2 REPLACE IMPLICIT AGENTS [default: FALSE]

TRUE: If an actor with an implicit actor code can be assigned to an agent according
to the assignment rules, that agent overrides the implicit agent assignment

FALSE: The implicit actor assignment is retained, but the agent is treated as if it had
been assigned an actor (in other words, it is not later converted to an implicit
actor)

Example
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Actor: CLINTON [USA:GOV]
Agent: AGENT: AMBASSADOR [AMB]
Source Text:
President Clinton’s ambassador to the GATT talks...

REPLACE IMPLICIT AGENTS = FALSE−− >source is USA GOV

REPLACE IMPLICIT AGENTS = TRUE−− >source is USA AMB

10.5.3 AGENT SEARCH = (<back>, <frwd>) [Default:
(2,2)]

Controls the number of words to look before and after an agent to find the actor.
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ISSUES

11.1 Purpose

KEDS can code up to 10 “issues” based on simple (rather than syntactic) pattern
matching. Issues are typically strings used to code aspects of the context of an event,
for example

ABORTION [T]
AIDS [E]
ANCESTRAL LAND [N?]
APARTHEID [H!]
ASYLUM [H]
BALLOT [G?]
BAN THE DEATH PENALTY [P?]
BANKING [F!]

though an .Issues file can contain strings dealing with any topic. Issue coding with
long lists is v e r y s l o w because all of the strings must be checked. In contrast,
coding issues by linking them to verb phrases [see below] is almost as fast as simple
event coding. The PANDA coding scheme makes extensive use of issue codes and their
project has developed several dictionaries containing issues lists dealing with domestic
political activity.

11.2 ISSUE Command

The ISSUE commands in the .Options file are ISSUE1, ISSUE2, ... ISSUE9, ISSUE0
with the syntax:

ISSUEn: TITLE=‘string’ FILE=‘string’ DEFAULT=‘string’
OPTIONS=‘string’ TAG=‘string’

99
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The strings in the command are between single quotes; the quote must be the first
non-blank character after the equal sign.

TITLE gives the name of the issue (up to six characters) that will appear in the Edit
dialog. If TITLE is not specified, ISSUEn is used as the title.

FILE is the name of a TEXT file in the same folder as the other files. Reading strings
from a file is optional; you may assign an issue by only using a default.

DEFAULT gives the default code; this must be ≤ 6 characters in length.

If the DEFAULT string begins with @ followed by one of the following variable
names:

DATE SOURCE SOURAG,
TARGET TARGAG EVENT

(for example @EVENT or @SOURCE), then the default value for the issue is set to
the value of that variable. For example, in ISSUE1 in the example below, the default
value assigned to “Place” is the code for the source.

OPTION=‘string of options’

NONRES: search for the string in the comma-delimited nonrestrictive clauses as
well as the rest of the text.
Default: don’t look at these clauses

NUMERIC: total the numbers that occur immediately prior to the string specified
in the TAG field; this is described in detail below

ZERO: Right-justify numeric issues using zeros.
Default: right-justify numeric issues using blanks.

TAG=‘numeric tag string ’

This is used to identify the numbers that should be coded in a numeric issue; it is
described in more detail below.

Example
ISSUE1: TITLE=‘Place’ FILE= ‘PANDA.PLACE’ DEFAULT=‘@SOURCE’
ISSUE2: TITLE=‘Issue’ FILE= ‘PANDA.ISSUES’ DEFAULT=‘X’
ISSUE3: TITLE=‘Domain’ FILE= ‘PANDA.DOMAIN’ DEFAULT=‘9’
ISSUE4: TITLE=‘Contxt’ FILE= ‘PANDA.CONTEXT’ DEFAULT=‘0’
ISSUE5: TITLE=‘Partic’ FILE= ‘PANDA.NUMBERS’ DEFAULT=‘0’
OPTIONS=‘NUMERIC ZERO’ TAG=‘#D#’

11.3 Issue Priorities

The issues file contain lists of strings and their associated codes. Issues files cannot
contain composite patterns or actor tokens – string matching is affected only the
underscore (words must be consecutive) and blank (allow intervening words).
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Note: If you want to code an issue using a composite pattern, this can
usually be done by using a rule to insert a special string into the text that
signals the presence of that pattern, then coding that string.

Issue codes can be designated as dominant or subordinate using the ! and ? operators.
The code for the issue with the highest priority will be assigned to the event. In
addition, a numerical priority between -254 and 255 can be assigned to a keyword by
putting the value in nnn after the code

ABORTION [T<10>]
AIDS [E<123>]
ANCESTRAL LAND [N?]
APARTHEID [H!]
ASYLUM [H<-54>]

The standard dominant code (!) is assigned a priority value of 255; the standard
subordinate code is assigned a priority value of -1. The issues are searched in the
order that they are entered in the file, and if two issues are found that have the same
priority value, the first one encountered will be used.

As with actors and verbs, null coding can be used to eliminate problematic phrases.
For example

MOVIE BOMBED [- - -]
BOMBED [MILACT]

would coded all phrases containing BOMBED as [MILACT] except for the phrase
MOVIE BOMBED. The null-coded phrase should come before the regular phrase.

11.4 NUMERIC Issues

Numeric issues are designed to total numbers that occur in a sentence; it can be used
to get the size of a protest, the casualties in a military engagement and so forth.

A numeric issue looks for a word of class <NUMBER> followed immediately by the
string specified in the TAG=‘string’ field. The numeric issue is set to the total of the
numbers that are followed by the tag.

In some instances, the tag can be a natural language word, e.g. TAG=‘DEMONSTRATORS.’
More typically – in order to deal with synonyms – it will be an artificial tag set by a
class and rule:

<demos> = DEMONSTRATORS PROTESTERS STUDENTS

<number> <demos>=><number> #D# <demos>

This combination of a class and rule would place the tag string #D# (which is unlikely
to occur naturally in the text) immediately after any number that was followed by
the words “DEMONSTRATORS,” “PROTESTERS,” or “STUDENTS.” An ISSUE
command could then use TAG = ‘#D#’ to total those numbers.
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Numbers are interpreted according to the following rules:

1. The total must be less than 1013−1; in other words, it must fit in a 12-character
code string.

2. Commas inside numbers are ignored (e.g. 10,000 is read as 10000)

3. Negatives and anything after a decimal place are ignored: numeric issues only
deal with positive integers;1

The file specified in the FILE=‘string’ statement contains the numerical equivalents
of quantitative vocabulary, e.g.

THOUSANDS [3162]
HUNDREDS [316]
MANY [500]
LARGE CROWDS OF [1000]

These equivalents can differ between issues: “many police” does not have to be the
same number as “many demonstrators.” If a numerical word is found that does not
have an entry in the FILE, then the default value set in the .Class file (if any) is used.
All of the words in the file are entered into the dictionary as having the <NUMBERS>
class and will be included in the <NUMBER> class list if a class file is written.

The DEFAULT sub-command has no effect in a numeric issue: words in the FILE list
must be assigned numerical values, and numbers not on that list are either interpreted
literally (‘123’) or according to the default value assigned in a .Class file.

11.5 PLACE:

PLACE is a special issue developed for the PANDA project that is activated with the
SET: CODE PLACE = TRUE command in the .Options file. When PLACE is
activated, the following rules are used to identify the location where the event occurred

1. Look for a preposition (these are set using the <prep> class in a .Classes file or
a PREP statement in the .Options file) followed within two words by an actor
whose code does not begin with:

blank PANDA’s missing value code

- null code

7, 8 or 9 PANDA’s prefixes indicating individual, organizational and multi-
lateral actors

1If someone really needs negatives and decimals, the program could be changed; but it is
faster this way and the intention of this facility is to count people, who generally occur in
quantities codeable as positive integers. With the clever use of rules and replace statement
and some post-filtering in a database or spreadsheet, it should be possible to get around the
restriction on integers, for example if you were dealing with monetary amounts.
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If such an actor exists, assign that actor as the PLACE

Example
Israeli Prime Minister Rabin and Jordan’s King Hussein met in Washington

today.

Note: Prepositional phrases often occur in indirect objects, for ex-
ample

Clinton and Yeltsin discussed the war in Bosnia

so this rule produces quite a few incorrect identifications.2

In addition to this problem, a number of short English prepositions
– for example TO , OF , BY , AT – can function as placeholders,
tense markers or as parts of idiomatic expressions. For example, BY
is a preposition, but also a marker for passive voice, and the Ran-
dom House College Dictionary (1975) lists 27 additional meanings for
BY. There are 31 distinct meanings for IN and 25 meanings for TO.
Treating IN and TO as if they occurred only as prepositions is a less
than completely reliable strategy. A fluent speaker disambiguates,
without conscious processing, these uses by context:

In a week, the negotiators appointed by the UN are going to

the meeting to be held in the village by the airport

A computer does not have this capability.

2. Look through all of the coded events for a source whose code does not begin
with characters mentioned above.

3. Look through all of the coded events for a target whose code does not begin
with characters mentioned above.

4. Look for a phrase in the first issue list. In the PANDA setup, this is designated
as the Place list

ISSUE1: TITLE=‘Place’ FILE=‘PANDA.PLACE’

On the assumption is that anything in the ISSUE1 list can be a legitimate
place, the codes are not checked for a legal first character. PANDA reserves the

2This example, of course, cannot be unambiguously parsed because one syntactically legal
interpretation would be

In Bosnia, Clinton and Yeltsin discussed the war

If that were the interpretation (highly unlikely in 1994; perhaps possible in 1996), KEDS’s
PLACE rules would be correct; the sentence is syntactically equivalent to

Clinton and Yeltsin discussed the Bosnian war at the UN.

Marx provides better-known example of this ambiguity:
Last night I shot an elephant in my pajamas. How he got into my pajamas I’ll

never know. (Groucho Marx, Animal Crackers)
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ISSUE1 list for purely geographical terms that cannot be identified with a single
actor, e.g. “Middle East,” “Persian Gulf,” “Jordan River”.

The PLACE rules are evaluated in the order given and the first rule that succeeds
establishes the location. If none of these hold for any of the events, the PLACE is
set to missing.

The first PLACE that is successfully identified by these rules is assigned to all of
the events coded from a lead. In other words, if a lead generates events with multiple
sources (for example, through a compound source), the first source identified will be
assigned as the PLACE in all of the leads.

11.6 Verb-linked Issues

In some situations, issues can be coded directly from a verb phrase. To accommodate
this, KEDS allows for a verb to have multiple codes, using a format similar to that
used for compound actors:

APOLOGIZE [013/H/12/M]

The issue codes are inserted into the active issues (in other words, those with an
ISSUEn statement in the .Options file) in order, starting with ISSUE2. This con-
vention is used because ISSUE1 is reserved for Place in the PANDA coding scheme
and therefore is coded by the other routines. The example above would assign:

ISSUE2=H ISSUE3=12 ISSUE4=M

Because the physical order of the issue codes in the output file can be changed using
the DISPLAY and OUTPUT options, this logical order doesn’t impose any real
restriction on the use of issues.

If you don’t want to code an issue for a particular verb phrase, use the null code [- -
-], and the issue will be filled in using the issues vocabulary lists. For example in

APOLOGIZE [013/- - -/12/M]

one would get

ISSUE2=<filled using issues lists>
ISSUE3=12 ISSUE4=M

Verb-linked issues also work with paired codes – just separate the two halves of the
pair with a colon:

VISIT [032:033/H:I/123/J:K]

When the primary event code is paired, the system checks whether any of the issue
codes are paired. If they are, the first code is assigned to the source-target event, and
the second code is assigned to the target-source event. If a code is not paired, it is
assigned to both events. To deal with a situation where the issues are paired but the
event code is not, just assign the same event code to each half of the pair.
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VISIT [031:031/H:I/123/J:K]

When issues are assigned through a verb, these follow the dominant/ subordinate
status of the verb; additional dominant/subordinate status codes on the issues will be
ignored.
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PROFILES

12.1 Purpose

The PROFILE command generates a record showing whether a word or phrase ap-
peared anywhere in the source text: this can be used for non-syntactic content analysis.
The difference between a profile and an issue or event is that profiles count the oc-
currences of a phrase anywhere in the source text, whereas events and issues identify
a single code. Profiles are primarily designed for statistical indexing and the deter-
mination of the context (see Salton 1989 for a discussion of these methods) and are
a useful supplement to the syntactic content analysis that is the primary function of
KEDS.

The profile records are written to a file with the suffix .profile. Each record consists of
the source text identification (date and identification code), followed by a set of codes
and, usually, numbers. The codes corresponding to the actors, verb phrases, issues
and other strings found in the text. The numbers can be either

1. the frequency of the phrases generating the code: for example, if phrases corre-
sponding to the code ISR occur four times in the text, the profile will contain

ISR 4

2. the location of the code in the text: one might have

ISR 1 ... ISR 10 ... ISR 20 ... ISR 25
assuming the phrases that corresponded to ISR occurred in the first, tenth,
twentieth and twenty-fifth words of the text.

The profile does not record default values of issues; it only records codes corresponding
to phrases actually in the text. Null codes are not included in the profile.

Because the frequency of codes and the ordering of codes varies for each record, the
records in the .profile file will usually not be directly usable in a statistical program
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but will have to be converted to a rectangular format first using a simple computer
program.

12.2 PROFILE command

The syntax of the PROFILE command is

PROFILE: ISSUEn1 ... ISSUEnm VERBS ACTORS AGENTS

{ LOCATION
CODE ONLY

} DELIMITER=<char> FIXED=n

All sub-commands in the PROFILE command are optional; the order of the sub-
commands does not matter. The abbreviation of the command is in bold face; for
example FIXED can be abbreviated FIX.

ISSUEn: Include codes from ISSUEn in the profile; as many ISSUEs can be
included as needed.

VERBS: Include codes from all non-null verbs in the profile. This records
only the verb roots, not the phrases.

ACTORS: Include codes from all actors in the profile.

AGENTS: Include codes from all agents in the profile.

The VERBS, ACTORS and AGENTS codes are written to the profile only if
they are simple codes (i.e. these cannot contain compounds, embedded issues or date
restrictions).

12.2.1 Formatting:

FIXED=n: All codes are adjusted to be n characters in length; they are
truncated if their length is greater than n, and blank-filled if the
code length is less than n. The default value of n is 6.

default: Codes are written at their full length, without blank filling.
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12.2.2 Numbers

LOCATION: The number following a code is the location of the word that
generated the code as counted by words from the beginning of
the text.

CODE ONLY: No location or frequency numbers are written.

default: The number following a code is the frequency that code
appeared in the text.

All numbers are written in a fixed format with 4-digits, right-justified.

12.2.3 Output Delimiter

DELIMITER=<character>: Character separating the entries. The formatting
characters +, ! and / work as described in the
chapter Formatting Output

Default: + (tab)

Example:

DELIM= sets the delimiter to a space

DELIM=/ sets the delimiter to a line feed

DELIM=ˆ / sets the delimiter to /

12.2.4 Command Example

PROFILE: VERBS ISSUE2 ISSUE5 ISSUE6 DELIMITER=, FIXED=8

Effect: The .profile file will contain all of the codes from verbs and from ISSUES 2, 5
and 6. The number following the code will be the frequency of the code in the source
text, the output fields will be separated by commas (,), and the codes will be fixed in
length at 8 characters.

Note: A maximum of 256 codes can be recorded in a profile record for
a single text. In the unlikely event that more than 256 codes are found,
the final code will be $OVERFLOW and the number following this will
be the number of codes found beyond the 255th.



Chapter 13

INTERFACE

13.1 Purpose

This section will discuss the operation of the KEDS program, including the windows,
mouse and keyboard controls, menus and dialogs. KEDS operates using a standard
Macintosh interface and with a few exceptions, follows the standard Macintosh user
interface guidelines. This section assumes that you are familiar with basic operations
such as pointing, clicking and responding to dialogs.

13.2 Starting the Program

The KEDS program is started by double-clicking either the KEDS program icon or
the icon of a KEDS project file. An introductory screen will be displayed, followed by
a dialog box asking for the coder ID. Enter any string (e.g. your initials) in response
to this, then click OK. The coder ID and date of the coding session are recorded in
the project file.

If you double-clicked the program icon, the next dialog box asks whether you want to
use an existing coding file or initialize a new file. Clicking the Use existing project file
button presents a standard Macintosh file selection dialog listing KEDS project files.
You can use this dialog to move around among the folders on the disk; the program
does not need to be in the same folder as the project file, dictionaries and data. Open
the appropriate project.

Clicking the Initialize new project file button creates a new project file or reset an
existing file. This process is described in the chapter Input Files/Project/Initializing
Project Files.

The program will now present information on the current project status and begin
reading the .Verbs, .Actors, .Options files. If you are using long dictionaries, the
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input process is quite slow – typically three or four minutes. If you are using long
dictionaries and an older Macintosh (e.g. an SE/30), the process is really, really slow,
so read your mail or get a cup of coffee. The delay is due to KEDS setting up a variety
of internal data structures as it reads the dictionaries. The system will “beep” when
the input process is completed.

After reading the dictionary information, the program may then present a dialog asking
whether you want to skip previously-coded record. If you click Yes, the program will
advance to the input record following the final record coded in the previous coding
session (this can also take a while on a slow machine). If you click No, coding will
begin with the first record in the text file.

When you reach the end of the text file, you will be given the option of coding another
file. If you click OK, the program will present a text file selection dialog; if you click
Cancel, the program will go through its standard Quit routine, closing the files and
saving any changes in the directories.

13.3 Windows

KEDS usually displays two windows: a text window that shows the text being coded,
and an event window that shows the events that have been coded from the text. In the
default configuration, the text window is larger and placed above the event window,
but both windows can be resized and moved to any place on the screen.

13.3.1 Text Window

This window shows the text that is being coded. There will be a slight pause between
the display of the text and the display of the events; this is when the coding is actually
being done.

Hitting the ‘0’ (zero) key on the keypad of the Apple “Extended Keyboard” or selecting
the Display/Parsed Display menu option will color-code the source text according
to how KEDS has classified it. For example, actors are displayed in red, verbs are
displayed in blue, and words KEDS is ignoring are shown with a line through them.
See the notes under the Display menu for more detail on the parsed display.

The message

Note: transformation rules were applied to the text before coding

indicates that the coded text was modified by transformation rules; see the Classes,
Composite patterns, and Rules chapter for details on the use of rules. If rules have
been applied, the text that was actually coded may be very different from the original
source text. The parsed display will show the transformed text and the list of the rules
applied.
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13.3.2 Event Window

The coded events are shown in the event window. Incomplete events – those missing
a source or target – are displayed in gray; complete events are in black. If no event is
complete, the first one with a source or a target will be in black.

If the event display is longer than the event window, it can be scrolled, field by field,
using the horizontal scroll bar at the bottom of the window.

The event window also shows “accuracy statistics”: the number events coded and the
approximate accuracy. The accuracy is calculated by

Accuracy = total machine coded events not corrected using Edit
total events generated by machine coding OR Edit

If the machine correctly ascertains that the text contains no event, this counts as one
correct event.

13.3.3 Scrolling

The large arrows in the lower left and lower right corners of the event window move
you forward and back through the file of text records and events. KEDS stores about
30 events before actually writing them – the exact number depends on the size of the
text and the number of events generated. When the Edit/Save menu option is used,
this storage is emptied.

You can use the reverse arrow (lower left corner) to go backwards through this list;
the small number inside the arrow shows how many events are stored in the reverse
direction. Similarly, if you have gone backward, a number will appear inside the
forward arrow (lower right corner) showing how many events remain stored in the
forward direction until a new event is read. If the reverse arrow disappears, you are at
the end of the stored list. You can also scroll through the list using the <Page Up> or
<Return> keys to go forward and the <Page Down> or <Backspace/Delete> keys
to go back.

When scrolling forward and back through events that have already been coded,
no recoding is done: this means that any changes made through the Edit dialog are
preserved. If you want to recode, use the Recode menu option, or edit the individual
events.

Once an event has been written, you can no longer edit or review it. All stored events
are written during a Save and when you quit the program.

13.4 Editing Events

Individual events can be edited by clicking on the event record in the event window.
This action brings up a dialog that allows the source, target and codes to be modified,
as well as allowing the status of the event to be changed. The events written to the
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.events files reflect these changes, so the program can be used for machine-assisted
coding.

The text of the codes is changed in the usual fashion for Macintosh dialogs: click in
the text box and type the appropriate changes. The text edit boxes for these codes are
formatted for 6-character codes but a full 12-character code can be entered or edited
by scrolling horizontally – select the area at the right end of the box and move the
mouse a bit further to the right. If the source and target need to be reversed, use
the Swap button in the dialog. When an event is edited, the Not an Event status is
switched to off – if you are editing the event, presumably you want to save it – though
this can be reversed manually.

Note: The strings entered in the edit boxes are truncated to the lengths
specified in the display formats. For example, if the Target code is spec-
ified as 4 character and you enter ‘ABCDEF’, only the four characters
ABCD will be displayed. If the Edit dialog doesn’t seem to be accepting
your changes, check the Display formatting

The New Event option in the Modify menu creates a new event template for doing
machine-assisted coding and automatically opens the event editor.

The Notes field will take up to 16 characters; see the Notes section in the Formatting
Output chapter concerning how this field is written to the output file. The Notes
field can be used in machine-assisted coding to add manually-coded information (e.g.
context or issue information) to the event record.

Incomplete events – those missing a source, target or actor – are “dimmed” on the
screen. The Not an Event check box can be used to eliminate any incorrect events.
The missing event code *** is used as a place-holder for missing information.

13.4.1 Editing using the keyboard

The event editing dialog can also be invoked using the keypad keys on the Apple
extended keyboard: 1 edits first event, 2 edits second event and so forth. The numbers
correspond to the complete list of events, not just those displayed in the window.

The following keys modify the effect of a click:

Clicking the event while holding down the command key (the apple key) will toggle
the Not an event status without displaying the dialog.

Clicking the event while holding down the option key will reverse the source and target.

Clicking the event while holding down the control key will create a new event that is
a duplicate of the event that was clicked.

The command and option buttons also operate with the keypadfor example command-
Keypad-2 will change the Not an event status of the second event.

By combining these operations, all event editing can be done without the mouse. Use
the keypad to select the event to be edited; enter information into the Notes field,
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move between the source, target, event and other fields using the <tab> key, and use
<Return> to close the dialog. Use <return> in the main window to go to the next
event.

13.5 Summary: Keyboard Shortcuts

command + click Toggles Not an Event status

Option+click Reverses source and target

Control+click Make a duplicate of the event

Keypad keys 1-9 Same effect as clicking event n

Keypad 0 Toggle between source text and parsed
text display

<return>, <enter>, Forward one record
<page down>, <home>

<backspace>, <delete>, Go back one event
<page up>
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KEDS MENUS

14.1 */HELP

All of the menus contain Help options that describe the basic functions of the menu.
These are substantially less detailed than this manual but may be of some use to
individuals who don’t read manuals.

14.2 FILE

14.2.1 Open Text File

Closes the current input .Text file, after writing all coded events to the .events and
.text files, then gives a file selection dialog for selecting a new input .Text file. The
new file should be in the same folder as the earlier file and the dictionaries. The event
statistics are also reset to zero.

Note: The current file is not actually closed until the new file is selected,
so selecting Cancel in the file selection dialog cancels the menu selection
without doing anything.

14.2.2 Save Dictionaries

Saves any changes to the .Actors, .Verbs, Class, then returns to the program. During
a Save, and during a Quit, the program does the following:

1. All coded events are written to the .events and .text files. If a .text file is being
written, the text saved will include any changes made using the Modify/Text
dialog.
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2. The .Verbs and .Actors files are written out in alphabetical order and in upper-
case, rather than the order that they were originally entered.

3. The .Verbs file is reformatted to line up the phrase codes.

4. Comments in the files are preserved verbatim, though occasionally long com-
ments on long phrases might be truncated.

5. Any lines after the ˜ ˜ FINISH statement are also copied verbatim.

6. The coder and date are added to any new actors, verbs or verb phrases.

7. If classes or rules are being used, the classes in the .Class file are written in
alphabetical order by class name, and the standard classes <CONJ>, <PREP>,
<NUMBER>, <PRONOUN>, <PLURAL>, and <TITLE> are included in
this file. Comments in the original .Classes file are not carried forward to
the new file. The <NUMBER> class will also include any words that were
designated as numbers by numeric issues.

8. The old versions of the files are saved as File Name.backup.

The .Options file must be changed externally and cannot be updated from inside the
program.

A Save purges all of the events from memory as it writes them to the .event and .text
files, so the reverse scrolling arrows will not go back to events that were coded prior
to the Save.

Note: You will be automatically prompted to save files after a specific
number of adds, deletes and changes are done using the Modify menu.
The number of changes made between prompts can be changed using the
SAVE command in the .Options file.

14.2.3 Quit

Terminates program, closing all output files (.events, .probs, .complex, .text), as well
as optionally saving changes to the .Actors and .Verbs files. If the .events or .probs
files are empty, they are deleted from the disk.

14.3 MODIFY

The Modify menu is used to modify the text, the .Actors, .Verbs and .Classes dictio-
naries or add new, blank events. Because the various Modify dialog need to manage
the entire list of verbs, actors, classes and rules, making modifications using the dialogs
is somewhat slow. When an extensive set of changes needs to be made – for example
when creating a new coding category using existing vocabulary – it is faster to edit
the files using an ASCII editor.

After you make a number of changes – the default is 8 – you will automatically be
prompted to save the changes. You can ignore this request, and the number of changes
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made between prompts can be changed using the SAVE command in the .Options
file.

If the LOCK DICTIONARIES command has been used in the .Options file, the
Modify/Actors, Verbs, Text, Classes and Rules selections are disabled and cannot be
used.

Note: In the default window configuration – which was the developed for
the small screens of the classic Macintosh computers – the Modify/Verb,
Modify/Actor and Modify/Phrases dialogs cover the source and event
windows, obscuring the text you may wish to enter. The dialog windows
cannot be moved, but on a large screen, the text window can be resized
and moved below the dialog so that the text is visible while you are making
modifications.

14.3.1 Recode

This option recodes the current record using any changes that have been made in the
actors, verbs, classes, rules or text. This is only required when you want to recode an
earlier event using dictionary changes made after that event was originally coded; the
current record is recoded automatically whenever one of the Modify dialogs is used.

14.3.2 New event

This creates a template for a new event and open the event editor. This option is used
in machine-assisted coding. If the text satisfied the complexity conditions, New Event
overrides this.

Note: If some of the information you need to enter is in an existing event,
use the Control+click (or Control+keypad) to make a copy of that event,
then edit the new fields.

14.3.3 Verbs

Changes the verbs and phrases in the .Verbs file. To change a verb, scroll to the
appropriate entry and click it. The verb and its code will appear in the edit boxes;
type the <tab> key to edit these fields.

When the Modify/Verbs dialog is first entered, and when the verb list is selected by
clicking any entry inside it, a border appears around the list and typing alphabetical
keys (A through Z will automatically scroll to the first entry beginning with those
letters). The keyed-scroll is reset whenever you click again in the list (including its
scroll bar) When the <tab> key has been pressed, or one of the text edit boxes or
command buttons is selected, alphabetical keys cause text to be entered.
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To save the changes in memory, click the Add, Change or Delete buttons (or use the
command-A, command-C or command-D key combinations). If you have not entered
a code, the program will ask for one; the program also presents a dialog verifying any
delete operations.

To edit a phrase, click the Edit Phrases button, use the command-E keys or double-
click a verb. This action will produce a list of the phrases associated with the verb;
these are edited in the same manner as the verbs. Alphabetical scrolling does not work
with the phrases.

Note: If you have previously copied text in the Modify/Text dialog (see
below), that text can be pasted into the verb or verb phrase box using
command-V. This allows words to be copied directly from the text into
the dictionaries.

Changes in the verb list are made immediately in memory, but are not changed in the
file until either Save or Quit are selected. You will be given the option of leaving the
program without saving changes.

The dialog ends when you click Done or type the <Return> key. The Modify/Verb
dialog causes an automatic Recode of the event; this is necessary in order to insure
that the references to verbs, codes and so forth are accurate.

14.3.4 Actors

This dialog changes the .Actor file and works in the same fashion as Modify/Verb:
Scroll to the appropriate entry, double-click it and make the changes. The alphebetical
scroll functions just as it does in Modify/Verb. As with Modify/Verb, the dialog closes
when the DONE button is clicked or the <Return> key is typed; this option also
causes an automatic Recode.

Date-restricted Codes

If a code involves date restrictions, it will appear inside “[ ]” brackets, and new codes
should also be entered with brackets. For example, to add a date restriction to the
code

GEORGE BUSH

USA:GOV

enter

[USA:GOV <930120]

and then click the Change button.
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14.3.5 Text

This menu item invokes a simple editor that allows changes to be made in the text
record; it is particularly useful if the text is going to be saved for possible recoding at
a later date. This editor is not intended to be used for making extensive changes –
use a text editor for that purpose – but it is useful for minor changes and annotations.
The editor can also be used to cut-and-paste text to the Modify dialogs.

The editor works with one line of the text at a time; click the Next and Previous
buttons to scroll between lines. Up to 241 characters can be included on a single edited
“line”1; a blank line is appended to the text for adding additional material. The first
line displayed will be the first line of the English-language text; click Previous to edit
the line containing the date and ID information.

If the OK button is clicked, the changes will be incorporated into the source text and
the record will be recoded. The text is reformatted into 80-character lines broken at
spaces. These changes will also be made in the .event, .text, and .complex output
files if the text is being written to any of those files. However, the changes are not
made in the original input text file. If the Cancel button is clicked, no changes are
made. To copy text, select the text in the edit box, then click the Copy button or
type command-C. This text can be pasted into the text box in the Modify/Actors or
Modify/Verbs dialog using the standard “paste” key combination command-V.

14.3.6 Classes

This option allows the membership of classes to be changed. The first dialog will show
a list of the classes; double-click the class you wish to modify. The next dialog will
list the members of that class. To delete a word from the class, click on it, then click
the Delete button or use command-D. To add a word to the class, type the string into
the edit box, then click the Add button or use command-A. The dialog closes when
the Done button is clicked or the <Return> key is typed; this option also causes an
automatic Recode.

When you attempt to add a word to a class, the system first searches the existing
dictionaries to see whether the word exists in another class, and notifies you if it does.

The Modify/Classes option is available only if classes have already been initialized
using the Classes command in the .Options file. Only existing classes can be modified;
it is not possible at present to add an entirely new class from inside the program.

Note: The Modify/Classes option can add words to all of the standard
classes except <ACTOR>, <AGENT>, <VERB>, and <COMMA>.
Words from those classes can be added to another class, but you can’t
add into those classes using this dialog

1In other words, this is working within the constraints of editable text in a Macintosh
dialog text edit box. At some point we may put a full-fledged text editor into the program,
but at least this is functional. If the 241 character limit is a problem, do some of the editing,
click OK, then use the editor again: leaving the editor reformats the text into 80-character
lines and one can then add additional information.
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Number Class

The Modify/Classes option works slightly differently for the <NUMBER> class. The
words in this class are displayed with their default numerical values (if any) following
the word in square brackets. The default value can be changed by clicking the word,
editing the value, and then clicking the Add button (in other words, Add acts as a
“change” command for the numerical values). The class list includes all of the words
that occur in the lists of numeric issues, though the numeric values of those lists are
not listed and cannot be edited.

Because the <NUMBER> class automatically includes all words that are being used
by numeric issues, a word in that class cannot be deleted if it is being used by an issue
– in other words, the only words you can delete are those which were initialized using
the Classes command in the .Options file. If you try to do this, you will get a caution
message that lists the first issue where the word is used.

A word also cannot be added to the <NUMBER> class if it is already assigned to one
of the standard classes (<ACTOR>, <VERB>, etc). If you try to do this, you will
get a caution alert and the word will not be added.

14.3.7 Rules

This option modifies rules: scroll to the appropriate entry, double-click it and make
the changes. The choice of the iteration operators − > versus => is made using the
buttons in the lower-left corner of the dialog. The dialog closes when the Done button
is clicked or the <Return> key is typed; this option causes an automatic Recode.

The Modify/Rules option is available only if some rules have already been initialized
using the Classes command in the .Options file.

14.3.8 Comments

This option is only active if a PROBLEMS command in the .Options file has been
used; it brings up a submenu for entering information in the .probs file.

Four options are available. Each option writes the original text, the events coded, the
word list and some additional information.

Remarks: Brings up a dialog box for entering remarks in the problem
file.

Internal Event: Inserts a message that the event was internal (i.e. not
international).

Actors Reversed: Inserts a message that the actors were reversed.

Wrong Event: Inserts a message that the wrong event was coded.
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14.4 DISPLAY

14.4.1 Word list

This dialog shows the words recognized by the system and how they were classified;
from this list one can usually figure out why the system made an event assignment.
This list supplements the information shown in the Show Parsed Text display option
by showing codes and complete phrases for roots containing multiple, non-consecutive
words. The code list is a window and can be moved on a large screen.

Note: If the system appears to be missing its identification of a word,
check the spelling in the source text. Spelling errors are surprisingly com-
mon in Reuters; one should also include both United States and British
spellings (e.g. ORGANIZATION and ORGANISATION) or else just use
a stem (e.g. ORGANI)

The reduction of compound actors and titles often results in a word that will not fit
in the first column of the list; this is indicated by a “...” at the end of the displayed
text. Double-clicking such an entry will display the full text below the word list. The
list window closes when the OK button is clicked or any key is pressed.

By default, the word list shows only the words that have been assigned class that is
used in the coding; clicking the Show only classed words check box will toggle this.
The word list does not show any words of type STOP , eliminated by OMIT delimiters
or comma-delimited clauses. If a word appears in the original text and is not in the
list, it was eliminated by the parser at some point. The word list will show the original
text for compound actors, titled actors and dereferenced pronouns.

14.4.2 Code list

This provides a list of all of the codes in the system along with any text associated with
the code in a CODE command in the .Options file. Event codes, actor codes, or all
codes can be listed; the default is event codes. The codes are presented in alphabetical
order. The code list is a window and can be moved on a large screen.

This option is not particularly efficient and in machine-assisted coding it is more
advisable to provide coder with a xeroxed page containing the codes.

14.4.3 Index

This creates an alphabetical index, by code, of all of the actors, agents2, verbs and
verb phrases in the system. The index is written to a text file < project > .index. In
the verb phrases, the root verb is shown following the * token.

2A separate AGENTS index is written only if the
SET: CODE AGENTS=TRUE
command has been used. This index will only show the explicit agent codes assigned with

an AGENT command. Implicit agent codes such as GOV in
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The index includes all of the codes assigned to an entry, including null, discard, com-
pound and date-restricted codes. When an entry has a composite code, the entire code
string is written after the entry.

Verb phrase diagnostics

The index automatically generates two diagnostics for verb phrases; these are evaluated
only if both the verb root and the phrase have simple codes. The diagnostics are merely
advisory and can be ignored.

/* Phrase code identical to root code */

This occurs when the code assigned to the phrase is identical to the code of the root.
The phrase is redundant because the root alone is sufficient to assign the code.

/* % token without compound code */

This diagnostic is shown when a phrase contains a compound actor token % and no
source ($) or target (+) token. A compound code (e.g. -% *PLAN TO MEET [082:082]
) is usually appropriate in this situation.

14.4.4 Status

Memory

This displays the amount of memory available in the various storage arrays of the
program.3

Roots = number of actors and verbs

Phrases = number of phrases and issue strings

Word text = total characters used for actors, verbs, classes, issues
and code text;

Phrase text = total characters used for phrases;

Codes = total distinct codes

Note: If you run out of memory, the program will usually terminate
using the standard exit procedure, so you will have the opportunity to

GEORGE BUSH[USA:GOV]
will be listed in the ACTORS index; this is done whether or not the CODE AGENTS

option has been activated.
3The use of arrays rather than dynamically allocated lists or trees is due to considerations of

speed and memory management: the Macintosh prefers to deal with large blocks of contiguous
memory rather than large numbers of pointers. The downside of this arrangement is that
storage capacity is fixed for various elements of the program.
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save verb and actor changes. KEDS provides warnings when it exceeds
95% of the capacity of its memory buffers; at this point it is a good
idea to quit the program rather than pushing it to the limits of memory.
KEDS’s memory-management routines are not particularly sophisticated
and the probability of the program unpredictably crashing under low-
memory conditions is decidedly greater than zero.

Word Count

This provides a count of the number of actors, agents, verbs, phrases, and preposi-
tions in the working vocabulary. Unlike the Memory report, it counts the number of
distinct items rather than showing the amount of memory used by those items.

Project

This displays the information recorded in a project file. When this option is selected,
you will be presented with a file selection dialog listing KEDS project files. Project
files can be examined even if their associated data files have been misplaced; the
project file currently in use can also be examined. The program then displays the
basic information about the file, similar to that displayed on the introductory screen.
Subsequent screens display the statistics for up to 64 coding sessions. The Write
button writes the coding session information to a tab-delimited text file; this can be
read into a word processor or a spreadsheet.

Information reported:

Date =date of coding session

Start =time session started

End =time session ended

Coder =coder identification

Texts =number of text records that were coded

Events =number of events produced

Accuracy =percentage of events produced that were accepted
without editing

14.4.5 Show Parsed Text

This toggles the type of display in the text window. The parsed text display shows the
text as “seen” by KEDS: stop words are not shown; text that is between OMIT de-
limiters or in comma-delimited phrases is shown as deleted, compounds are combined,
pronouns are dereferenced, and words are color-coded by type:
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Blue Verb with code assigned to root

Blue, italic Verb with null-coded root; this will only be coded
if one of its phrases is matched

Red Actor

Red, italic Implicit actor: agent that was converted to an actor

Green Agent

Magenta Dereferenced pronoun

Yellow Unreferenced pronoun

Cyan Conjunction

Cyan, italic Preposition

Black Unclassified words

Line through Word is not being used in the coding because it
word is a null-coded actor (red), null-coded verb without

phrases (blue) is inside a comma-delimited nonrest-rictive
phrase, or has been incorporated into a compound actor.

If a root contains multiple words connected by underscores, all of the words in the
root will be colored. If the multiple words are not connected by underscores, only the
first word will be colored. Use the Display/Word List menu option to see the complete
root.

If a word is followed by one or more subscripts, it is a member of a class other than
the classes indicated by color-coding. The numbers correspond to the class indices; a
list of these is shown following the legend.

Dereferenced pronouns are followed by the actor they refer to. The symbol “− >”
indicates that the reference is within the current text; the symbol “>>>” indicates
that the reference was forwarded from the previous text.

If transformation rules were applied to the text, a list of those rules is provided in
the parsed display. The number in the first column reports how many times the rule
was applied; the second column shows the rule itself. The message (additional rules
were used beyond those listed here) means that there was insufficient room available
to store the list that reports all of the rules used; this will only occur under unusual
circumstances.4

Note: If there is a phrase containing a discard or complex code in the

4This list shares storage with the class assignments, and will only occur when there is a
very large number of class assignments and a number of different rules are applied. This has
no effect on the application of the rules, only on the report shown on the screen.
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sentence, the parsed display will only show a message to that effect: KEDS
stops parsing as soon as it finds a discard or complex phrase.

If the parsed list contains garbage, try doing a Recode to clean it up.
This was a problem in earlier versions of the program but should occur
only rarely in this version.

14.4.6 Show Invalid Events

When this option is checked, invalid events (see Options/Valid Events) are displayed
in gray (“dimmed”). When it is not checked, invalid events are not displayed at all.
If there are no valid events to be displayed, the message No valid events is shown. In
rare circumstances, this message will also appear if one is scrolling the event window
past the number of valid events. Selecting this menu item toggles the checkmark.

14.5 Options

14.5.1 Valid Events

This dialog sets the conditions for whether an event is considered valid and written to
the output file; it is the menu equivalent of the VALID command in the .Options file.
The default condition requires both a source and a target; either of these requirements
can be changed using this dialog (or using the VALID command in the .Options file).
Checking a Source or Target option is equivalent to putting in the VALID command.

The validity condition is true if an event has an non-null code for the actor (source or
target). If agents are being coded, either the actor or the agent must be non-null.

The settings in this option are saved in the project file and set to those values the next
time the project is used unless overridden by a VALID command in the .Options file.

14.5.2 Pause When

This dialog sets the conditions under which KEDS pauses before coding the next
record, giving you the option of recoding. It is the menu equivalent of the PAUSE
command in the .Options file. This is useful is one is dealing with source material
that contains irrelevant material such as purely internal events, when you only want
to look at the text when KEDS has not found any events, or when you only want to
look at complex text.

The three code-related options are:

Always

KEDS pauses after coding each event; this is the default.

Contains
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Pause when the coded text contains all of the checked items. In machine assisted
coding, this option is typically used as a filter to bypass sentences that contain nothing
of interest. Note that if you are only interested in verb phrases (“events”) and not
actors (for example if you are using KEDS to code something other than event data...),
sources and targets can be set to default values.

Missing

Pause if the coded text is missing any of the checked items. This option is typically
used in machine assisted coding to fill in missing information.

The Source, Target and Event items are selected using check boxes. Note that Con-
tains acts as a logical AND while Missing acts as a logical OR in this selection.

If the input contains a discard phrase, it is always skipped if the Contains or Missing
options are active.

Checking the Complex option causes the program to pause whenever complex text is
found; this acts as a logical OR with the code-related options.

The settings in this option are saved in the project file and reset to those values unless
overridden by a PAUSE command in the .Options file.

14.5.3 Complexity

This dialog sets the complexity conditions (see Complexity Filter section in the .Options
File chapter). The logical conditions are selected using check boxes. Numerical options
are activated by setting them to a non-zero value. If a non-numerical value is entered
for a numerical option, the system will beep after OK is checked and the option set to
zero. A Recode is done automatically after the dialog is closed.

If you want to divert complex sentences to a .complex file during autocoding, activate
at least one of the complexity conditions using the COMPLEX command in the
.Options file. Any changes in the complexity conditions made through this menu
option will be reflected in the contents of the file.

Note: because KEDS initializes all of its required files after the .Options
file is read, a .complex file cannot be activated using the menu alone.

14.5.4 Parameters

This dialog allows many of the SET: parameters to be changed temporarily; these
changes will not be reflected in the .Options file. A recode is done automatically after
the dialog is closed.

The parameters associated with CODE AGENTS cannot be changed unless the
SET: CODE AGENTS=TRUE was included in the .Options file. If a non-
numerical value is entered in the Look Forward or Look Backward box, the system
will beep after OK is checked and the value will not be changed.
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14.5.5 Auto Coding

Selecting this option puts the program into automatic coding mode: it will continually
code events without pausing and without stopping to allow editing. It is typically used
to code a set of data using an established dictionary. In autocoding mode, the program
does not write events unless a source, target and event have been identified.

To stop the automatic coding, select this option again from the menu bar. In each
case, you will be asked via a dialog box to verify the command. When autocoding is
stopped, the dialog box shows the number of events coded and the time required for
the coding.

To temporarily stop automatic coding, hold down the mouse button while the cursor
is in the text window. Coding will resume when you release the button.

If the Enable Multifinder option is checked, KEDS’s autocoding will run as a “back-
ground” process in Multifinder: you can switch to another program and KEDS will
code at the rate of about two events per second during any idle time available. How-
ever, enabling Multifinder slows the autocoding substantially even when you aren’t
using another program – for example it halves the coding speed on a Mac 7100 – so
unless you intend to use your machine for another task, leave this option unchecked.5

Note: If Multifinder is enabled, you may want to disable any screen-savers
when doing autocoding. KEDS will autocode while a screen-saver is run-
ning but slows to the background rate of two events per second because it
thinks the screensaver is another program. High cost for watching flying
toasters. When the Multifinder option is disabled, the screensaver will be
activated after the program has finished coding so you can safely leave
the program alone after starting the autocoding.

See Also: The INPUT FILES; Text File; Coding a number of files section for in-
structions on setting up the .Text file to autocode a set of input files.

14.5.6 Skip Records

This option provides two ways of skipping ahead in the input file. When skipping, the
records are not coded and they cannot be accessed using the reverse arrow.

Until date ≥ date

Enter the date to which you want to skip in YYMMDD format (e.g. 950809= 9 August
1995). Records will be skipped until the first record after a record with a date that is
greater than or equal to that date. If you want to stop exactly on the first record of

5The situation is actually a bit more complicated than this: even with the Multifinder
option disabled, you can still switch to another program by selecting it from the Multifinder
icon (right side of the menu bar in System 7), then clicking a second time. This will allow
you to operate the alternative program, but no background coding will occur. This is a quirk
rather than a deliberate feature and may not be maintained in future versions of KEDS or
the Finder.
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the date, skip until the previous day and then manually go through the records of the
previous day.

Next number records

Enter the number of records you wish to skip. If this is greater than the number of
records in the file, the program will beep and display a blank text record when it
reaches the end of the file; hit <Return> to exit. If you do not enter a valid number,
the option will do nothing.
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PROGRAM LIMITS

Note: This is only a partial list of the maximum limits

Lines in a text record 32

Words in a text record 255

Characters in a text record (including blanks) 2560

Characters in IDInfo string in header (default=6) 15

Value of story and sentence sequence numbers 32767

Number of codes in a string 64

Number of distinct codes in system 1023

Characters in a verb phrase 80

Sets of OMIT delimiters added in the .Options file 3

Sessions tracked in Project file 64

Events found in a single text 32
(after compound expansion)

Total characters in verb, actor and agent roots, 131072
and issue strings
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Total distinct verb, actor and agent roots 8192

Total characters in phrase patterns 262144

Total distinct phrase patterns 16380

Past events stored 32

Sentence conjunctions tracked 8

Number of stop words 64

Number of issues 10

Number of elements in OUTPUT, DISPLAY or 32
LABELS format
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ERROR MESSAGES

B.1 Program reports garbage in input files

The program may report garbage in input files that appear okay in a word processor
or ignores .Options commands.

Be sure that the files were saved as Text Only: Microsoft Word for example occasion-
ally decides that you want a file saved in Word’s Normal (i.e. formatted) format even
though it was originally saved as Text (pasting something from a Normal-formatted
file seems to do this, for example). The formatted files contain a large amount of
non-text material prior to the text: when the .Actors, .Verbs and .Class files are read
this incorrect file format will immediately be obvious, but routine reading the .Options
file will usually just skip over this information. Under some configurations (notably
“Fast Save”) MS-Word does not insert new material into the file where you expect,
and KEDS will appear to be ignoring the new commands. To correct the problem, use
Save As... to re-save (i.e. replace) the file under the same name with the Text Only
file format option selected.

B.2 Error messages during input phrase:

Note: If the program encounters any of these errors while reading the
.Actors, .Verbs or .Options phrase lists, you will be given the choice of
continuing to check the phrases, but the program will not run unless
the errors deal only with pattern syntax errors. Make the appropriate
corrections using a word processor and then re-run the program.

• Blank line

– Meaning: A blank line has been encountered when a phrase was expected

130
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– Solution: Eliminate line.

• Phrase has actor token connected with underscore
Phrase is missing a verb token (*)

– Meaning: See comments below under Editing

• No code (“[...]”) has not been specified

– Meaning: The code is missing for an actor, agent, verb, or phrase.

– Solution: Add the code.

• No phrase or pattern has been specified

– Meaning: The first item encountered in an input line was the code. This
usually occurs when <Return> was accidentally hit after entering a phrase
or pattern and will be preceded by a missing code error in the previous line.

– Solution: Add the phrase or pattern, and remove the <Return>.

• “< char >” or “< char >” cannot be indexed

– Meaning: The first two characters of a phrases can only contain charac-
ters between ‘@’ and ‘ ’ in the ASCII sequence; for practical purposes, this
means upper-case letters. Lower-case letters are automatically converted
to capitals and a few diacriticals are converted, but other characters (for
example, ‘$,’ which is KEDS’s token for the location of the event source)
will cause problems.

– Solution: Eliminate the characters causing the problem.

• The phrase “...” has already been entered as a [word type]. The second entry
will be ignored

– Meaning: The same phrase has been entered more than once, so the
entry is either an unintentional duplicate or the function of the word is
ambiguous. If the phrase is a verb, the phrases associated with the verb
are also eliminated.

– Solution: Eliminate the duplicate phrase in the appropriate file. Alter-
natively, if you are certain that the second entry is the one you wish to
eliminate, just save the file, since the version of the dictionary in mem-
ory will not contain the duplicate. Hopelessly ambiguous words such as
GEORGIA may need to be assigned a complex or discard code.

• Error in NOTES format:
...
This produces a string longer than 255 characters; the format specification has
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been truncated.

– Meaning: A replication factor (“ ˆ nnnˆ ”) in a NOTES format produces
a format string that is too long. This can occur either because the replica-
tion numbers are two great (e.g. [ABC ˆ 156 ˆ EFG ˆ 100 ˆ ] or because
you forgot the closing “ ˆ ” in the specification.

– Solution: Shorten the replication factor or add the closing ˆ .

• The following pattern has a syntax error:
< pattern >
�
Problem: < problem description >
The pattern will be ignored.

– Meaning: A syntax error in a pattern. The � points to the approximate
location of the error.

• Syntax errors detected:

– Pattern is missing a verb token “*”

∗ All verb phrases must contain a * indicating the location of the verb

– Verb token “*” can only be preceded/followed by or blank

∗ Text (e.g. suffixes or verb endings) cannot come directly before or
after the verb token; these must be entered as separate words.

– “ ” cannot follow a blank

– “ ” following “|” or “{”

∗ An underscore can only follow a string, *, +, $, % or }
– No closing “>” in class name

∗ ‘<’ without a corresponding ‘>’

– < string > is not a valid class name
string has not been declared as a class; check for misspelling

– A “ ˜ ” must be followed by a “{”

∗ A set { } must follow immediately after any not operator ˜

– Missing “}”

∗ There are insufficient closing brackets

– Too many “}”

∗ There are too many closing brackets
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– No format continuation, add ˆ ˆ to beginning line

∗ No continuation marker ˆ ˆ at the beginning of an extended format
command

– ISSUE command; Missing ‘ in ’ -delimited string

∗ The ISSUE command expects an apostrophe to be the first non-blank
character after the equal sign in its components. If none is found, it
returns a null string for that component.

– ISSUE file < file − name >;Non-numeric priority; value set to zero

∗ The characters inside an issue code priority cannot be interpreted as a
number. The issue and its code will be maintained but the numerical
priority will be set to zero,

– Numeric ISSUE file < file − name >;Non-numeric value string.

∗ The characters inside a numerical value cannot be interpreted as a
number. The numerical issue word will be ignored,

– ISSUE command; Unrecognized DEFAULT variable

∗ The string following @ in the DEFAULT= field does not correspond
to a legal variable name. The default is ignored but the issue is still
coded.

– ISSUE command No TAG string set in numeric issue

∗ If the OPTIONS=‘NUMERIC’ field has been used to specify a nu-
meric issue, a TAG=‘string ’ field must also be used to specify the tag
string,

– Solution: Correct the error

B.3 Error messages in Modify dialogs

• Phrase is missing a verb token (*)

– Situation: Editing verb phrases

– Meaning: A verb phrase must contain a “*” character indicating the
location of the verb in the phrase.

– Solution: Add a “*” at the appropriate location in the phrase.

• Please enter a code before adding

– Situation: Editing verb phrases

– Meaning: A phrase has been entered but there is no code associated with
the phrase.
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– Solution: Enter a code (click in the CODE box or use the tab key); if you
don’t want any code associated with the phrase, use the null code - - -.

• < word > is being used by ISSUEn and cannot be deleted.

– Situation: Attempting to delete a word in the <number> class.

– Meaning: The word is being used at least one numeric issue (the message
displays the name of the first issue that used the word) and therefore cannot
be eliminated from the <number> class.

– Solution: Eliminate the word from the issue(s). If only the default value
is problematic, set it to zero by editing and using ADD.

• < word > has already been assigned to a non-numeric standard class; it cannot
be changed to a number.

– Situation: Attempting to add a word to the <number> class.

– Meaning: Words in the <number> class are assigned a primary type of
<number>. Words already assigned to one of the standard classes – for
example actors, verbs, agents or conjunctions – cannot also be numbers.
A word that is in a non-standard class can also be a number

– Solution: None.

B.4 Error messages relating to memory

• Out of memory while trying to initialize the < array name > array. Click
OK to terminate this run, then double-click the new project file to start over:
program will probably work the second time.

– Situation: Usually after project initialization

– Meaning: Possibly the total size of the actors, verbs and issues lists is
too long, but this occurs sporatically and we’re not really sure....

– Solution: As noted, exiting the program (which may crash anyway) and
then restarting it will usually solve the problem. You’ve reached the ca-
pacity of the program; shortening the lists might also help. If you have
reduced the memory size below the recommended level, put it back to the
recommended size, and raising it above the recommended size might also
be helpful. This error is due to some sort of initialization bug that we are
trying to track down.

• Memory manager error at < handle name > in < procedure name >. This
indicates an uncorrected program bug: please contact p-schrodt@ukans.edu for
an update. Click OK to terminate program.

– Situation: Initialization and after dialogs

– Meaning: This indicates a bug in the program.

– Solution: None: if the program is working correctly you’ll never see this.
If you do get the message and are in luck, it will have been solved in a
later version of the program. If not, we can probably use your vocabulary
lists to track it down.
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• Out of memory while trying to initialize the <array name> array in <procedure
name>. The <description of KEDS function> procedure will not be run. Click
OK to continue.

– Situation: Procedures that require additional memory but can be by-
passed without crashing the program, e.g. rule implementation and project
reports

– Meaning: The total size of the actors, verbs and issues lists is too long
for the available memory.

– Solution: You’ve reached the capacity of the program; shorten the lists
or increase the allocated memory. The program will continue to function
– save your lists! – but the frequency of this error message will probably
begin to annoy you.

• Click OK to terminate program. You are running low on memory in < location >.
Adding actors, verbs or phrases may cause a fatal memory error. Save your ac-
tors and verbs lists, quit the program, and edit those lists to make them shorter.
This is only a warning

– Situation: Reading or editing actors, verbs or verb phrases

– Meaning: The total size of the actors, verbs and issues lists is too long.

– Solution: You’ve reached the capacity of the program; shorten the lists. If
you are really desperate, you can free up some memory by eliminating the
CODE statements in the .OPTIONS file, but generally you must eliminate
phrases. This warning occurs when you’ve got about 5% of the memory
remaining and allows for a graceful exit; if you ignore it and actually run
out of memory, the program will probably crash in the near future. If you
are near the limits of memory, it is advisable to do the editing using a word
processor rather than in KEDS

• The following memory problem has occurred:
< explanation >
Click OK to terminate program; changes will be lost. Increasing the application
memory size MAY solve the problem.

– Situation: Reading or editing actors, verbs or verb phrases

– Meaning: Occurs if phrases continue to be added after earlier warning,
but now terminates the program.

– Solution: See above. Increasing the memory size usually won’t solve the
problem but in a few circumstances it will.

• Insufficient memory to display Help text

– Situation: When activating any of the Help menu options

– Meaning: There is insufficient available memory to read the Help files
into memory and display them. This warning does not affect the program;
it just tells you that the help information will not be displayed.

– Solution: Increase the Preferred size memory size for the programin
the Finder, single-click the program icon and type command-I (or select
File/Get Info in the Finder menu), then increase the Preferred size number
in the Memory Requirements box.
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• Insufficient space for the VERIFY string < string > in the text buffer; it will
be ignored

– Situation: When running the program in VERIFY mode

– Meaning: There is insufficient available memory to store all of the veri-
fication strings and the source text.

– Solution: Decrease the size of the test text or the number of events coded.

B.5 Error messages relating to files

• KEDS can’t find the file <file name or garbage> . Please be sure this is in the
appropriate folder. Click OK to quit the program.

– Situation: Reading during initialization

– Meaning: One of the input files.Verbs, .Actors, .Classes, .Options, or a
text or issues file isn’t where KEDS expects it.

– Solution: This typically occurs after you’ve rearranged files in different
folders, so the subdirectory structure is different than it was when the
project file was originally set up. Either restore the arrangement of the
files, or reinitialize the project file. You may also have misspelled the name
of the file in a CLASS or ISSUE command.

• KEDS is having difficulties with the file <file name> (File error -34 :Disk Full).

– Situation: Usually during a file save; also it could occur while coding

– Meaning: Your disk is full.

– Solution: KEDS uses a number of temporary disk files. During a save,
KEDS holds three copies of the .Verbs and .Actors lists: the new copy, the
original and the backup. If the save is successful, the backup is deleted
and the original renamed as backup; if the save is not successful, you may
see a file with the suffix.backup.2 this is your previous backup. KEDS also
creates a file called KEDS.Temp.1 that holds coder date and identification
information from the lists.

You can also run out of disk space while processing events and writing
them to an output file. The coded data may take considerably more room
than the original text, particularly if you are saving text records.

The upshot: don’t run KEDS with a disk that is nearly full.

• KEDS is having difficulties with the file <file name> (File error -47:File open
in another application).

– Situation: Usually during initialization

– Meaning: In all likelihood, you’ve got one of the input files (.Verbs,
.Actors, etc.) open in a text editor.

– Solution: Close the file.
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• KEDS is having difficulties with the file <file name> (File error # < error >
< description >).

– Situation: During any disk operation

– Meaning: The Macintosh has returned a file error and there is nothing
KEDS can do about it. The file error number is from the standard set of
Macintosh disk file errors.

– Solution: Try again; it could just be a random glitch. Restarting the
computer also may help. This error should be quite infrequent unless your
machine is having mechanical problems.

B.6 Program crashed after initializing a project
file

Well, this happens occasionally... Just double-click the new project file to start over;
the program will work fine the second time.

B.7 Program skips records without stopping:

Check the settings in the Options/Pause When menu command; these may have been
changed by a previous user. Selecting the Always option will cause the program to
stop for each record.

B.8 Program does not produce .events files:

Check that the project name is less than 16 characters – if the name is too long it
adding the .events.nn suffix may produce an illegal file name, so the file will not be
saved (a future version of the program will contain an error message for this condition).

B.9 Program isn’t writing complex records to
the .complex file

There are two ways this could happen:

During human-assisted coding: KEDS doesn’t write a .complex file except during au-
tocoding.

During autocoding: You need to include a COMPLEX: statement in the .Options
file.
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B.10 Program is beeping while coding:

This is usually due to an infinite loop in a REPLACE command or a rule. A very
composite pattern with a large number of embedded patterns could also cause this;
there is a recursion limit of 16 levels in the pattern matching, though it is very unlikely
that this limit will be hit unless there is something wrong with the original pattern.
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Appendix C

REVISION HISTORY

Version Date Features
0.1 91.2 Basic pattern matching for actors and verb phrases. Basic

project file procedure and line-oriented user interface.

0.2 91.7 New parsing system with separate lists for actors, verbs, and
stopwords; syntactic information used to identify actors and
event codes. Interface and documentation expanded; initial
work on Macintosh interface. Implemented German-language
facilities.

0.3 91.9 Full Macintosh interface; New Event option; compound actors
and verbs, pronoun substitution, comma-delimited clause
elimination, title-compression, original agents facility.

0.4 92.6 Not released; experimental version used to code sources other
than Reuters.

0.5 93.5 Coded compound actors, project status report; Notes facility;
keypad Edit options. Considerable debugging and elimination
of experimental features in version 0.4.

0.6 94.2 Extended event editor; formatted output; scrolling text and
event windows; agents and issues coding; PLACE searching.

0.7 94.11 Enhanced output formatting, compound agents, complexity
detection, multiple file output, date restricted actors. PANDA
options integrated into main program, German options
deactivated.

0.8 95.6 Pause when, Skip records, Word count, and Help options

0.9 95.12 Composite patterns, rules and classes; new manual; complex
and discard codes; index; pronoun forwarding; AUTOFILE
option; enhancing parsing of compound actors.
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EVENT DATA
RESEARCH

D.1 Introduction

Note: This appendix is based on Philip A. Schrodt. “Event Data in
Foreign Policy Analysis” in Laura Neack, Patrick J. Haney and Jeanne
A.K. Hey, eds. Foreign Policy Analysis: Continuity and Change in Its
Second Generation. New York: Prentice Hall, 1994.

Foreign policy analysis developed at about the same time as the behavioral approach
in political science. The objective of the behavioralists was to study political behavior
using systematically measured variables, statistical techniques, and unambiguously
stated hypotheses. In some areas of political science, the behavioralist studies used
measurement techniques that had been developed earlier. For example, researchers
attempting to model elections found that the traditional questions asked of potential
voters in survey research – party affiliation, whether they had voted before, who they
were planning to vote for and so forth – provided a useful foundation for their studies.
While the statistical methodologies and survey methods used in contemporary voting
research are substantially more sophisticated than the voting surveys of the 1920s and
1930s, the basic measurement instrument – the public opinion survey – is the same.

No equivalent data existed in the field of foreign policy analysis. Traditional studies
of foreign policy primarily used narrative sources such as documents, histories, and
memoirs and there was no way to directly analyze these in a statistical framework.
This disjuncture necessitated the development of new methods for generating data. A
variety of these methods have been discussed in the other chapters of this volume; this
chapter will focus on one of the most commonly used measurement techniques, event
data.

The basis of many studies of foreign policy is the fundamental question of “who did
what to whom?” For example, during the Nixon administration (1968-1974), the
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United States and the Soviet Union had a relaxation of diplomatic tensions known as
the détente period. This was reflected in a variety of foreign policy actions, including
arms control agreements, a decrease in hostile rhetoric, increased trade, and increased
cooperation in resolving disputes. A decision maker living during this period would
have a general perception that the hostility between the two superpowers had de-
creased. However, this perception would be based on a general pattern of cooperative
interaction, rather than on a single incident.

Event data are a formal method of measuring the phenomena that contribute to foreign
policy perceptions. Event data are generated by examining thousands of newspaper
reports on the day to day interactions of nation-states and assigning each reported
interaction a numerical score or a categorical code. For example, if two countries
sign a trade agreement, that interaction might be assigned a numerical score of +5,
whereas if the two countries broke off diplomatic relations, that would be assigned
a numerical score of -8. When these reports are averaged over time, they provide a
rough indication of the level of cooperation and conflict between the two states.

Figure 1 shows the actions that the United States directed towards the Soviet Union for
the period 1948-1978 as measured by the Conflict and Peace Data Bank (COPDAB)
event data set collected by the late Edward Azar (1980,1982).1 In the COPDAB coding
scheme, negative numbers indicate conflictual behavior; positive numbers indicate
cooperation. COPDAB is based on The New York Times and a variety of regional
newspaper sources; the data cover the period 1948-1978.

The COPDAB time series shows three general periods. The early Cold War (1948-
1962) is characterized by uniformly negative relations, though these are more stable
in the late 1950’s than in the early 1950’s. A partial “thaw” occurs in 1962-1970
following the Cuban Missile Crisis, with the relationship being neutral. Finally, the
1970-1978 period shows the rise and fall of the détente policy. Other event data sets
covering the 1980s record the “new Cold War” of the early Reagan period followed by
the improved relations that occur when Gorbachev comes to power in the USSR.2

The event data record of USA-USSR interactions correspond closely to the patterns
one would expect from an historical study. Moreover, the event data can also be used
to fine-tune that chronology. For example, while Nixon clearly intended to implement
a détente policy from the beginning of his administration in 1969, there was continued
disagreement between the USA and USSR over the US involvement in Vietnam, the
1968 Soviet invasion of Czechoslovakia and other issues, so the interaction pattern is
not actually positive until 1971. Positive interactions peak about the time of Nixon’s
resignation in 1974; the event data scores then decline during the two years of the
Ford administration and return to post-Cuban Missile Crisis levels by 1976.

Figure 2 shows another example of the use of event data to chart the evolution of
a complex international interaction, the Palestinian intifada (uprising) that began
in December 1987.3 This chart is based on the coding of news stories on Israeli-
Palestinian reported by the Reuters international news agency. These reports were
automatically coded by a specialized computer program into the World Events Inter-

1Figure 1 is based on the COPDAB scores reported in Goldstein and Freeman (1990:162).
2See Goldstein and Freeman 1990.
3The data in Figure 2 and the Israel-Lebanon time series mentioned below are discussed

in Schrodt and Gerner (1994).
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Figure 1
USA Actions Towards USSR, 1948-1978
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action Survey (WEIS) event data categories developed by Charles McClelland (1976) .
The categorical WEIS events were then converted to a monthly numerical score using
a scale devised by Goldstein (1992); as in Figure 1, negative scores indicate conflict
and positive scores cooperation.

This time series shows the pattern of interactions – largely uses of force – in con-
siderable detail. The initial increase in conflictual activity in 1982-83 corresponds to
Israel’s invasion of Lebanon, which was initially directed against Palestine Liberation
Organization forces. The invasion is followed by a period of five years of relative quiet,
though a separate series of event data on Israel’s interactions with Lebanon during
this period shows a great deal of conflict as opposition to Israeli forces shifts from the
PLO to various Lebanese groups. The intifada begins abruptly in December 1987 and
then gradually declines over the next five years, though there is another upsurge in
violence following the election of a Labor government in Israel in the summer of 1992.

As with the case of the USA-USSR interactions, this time series gives a more exact
measure of the patterns of events over time. For example, while the intifada follows a
lull in conflict during the summer of 1987, the event data also show a general increase
in conflict beginning about 18 months earlier. This increase may have been a precursor
to the larger uprising.

As these two figures illustrate, event data can be used to summarize the overall rela-
tionship between two countries over time. The patterns shown by event data usually
correspond to the narrative summaries of the interactions found in historical sources,
but unlike narrative accounts, event data can be subjected to statistical analysis. As a
consequence, event data are frequently used to study foreign policy outcomes and some
characteristics of the international environment within which foreign policy decisions
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Figure 2
Israel-Palestinian interactions, 1982-1992
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D.2 Creating Event Data

The creation of event data is basically a process content analysis (see Krippendorf 1980;
Weber 1990) and involves three steps First, a source or sources of news about political
interactions is identified. This could be an internationally-oriented newspaper such
as The New York Times, a set of regional newspapers and newsmagazines, a news
summary such as Facts on File or Deadline Data on World Affairs, or a newswire
service such as Reuters or the Associated Press. As will be discussed below, the choice
of the event source can have a substantial effect on the number and type of events
reported.

Second, a coding system is developed, or a researcher may decide to use an existing
coding system such as WEIS or COPDAB. The coding system specifies what types
of political interactions constitute an “event,” identifies the political actors that will
be coded (for example, whether nonstate actors such as international organizations
and guerrilla movements will be included in the data set), specifies the categories of
events and their codes, and specifies any information to be coded in addition to the
basic event. For example, the COPDAB data set codes a general “issue area”whether
an action is primarily military, economic, diplomatic or one of five other types of
relationship. WEIS, in contrast, codes for specific “issue arenas” such as the Vietnam
War, Arab-Israeli conflict, and SALT negotiations.

In a project using human coders, these coding rules are collected into a manual used
for training coders; these manuals are often fifty or more pages in length and deal
with a variety of contingencies that coders may encounter. The third stage involves
training coders so that a news story will be assigned the same codes irrespective
of the individual coding it. Coders in event data projects generated in universities
are typically graduate students or advanced undergraduates in political science. The
training stage is frequently quite time consuming but with sufficient training, most
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projects train coders to the point where two coders will assign the same code to a
news report in 85% to 90% of the cases (see Burgess and Lawton 1972). In a project
dealing with a relatively short period of time – for example the 1990-1991 Gulf crisis
– a single researcher may do all of the coding in insure that a single coding standard
is used. In machine coding system (see Gerner et al. 1994), a computer program must
be provided with the appropriate vocabulary to identify actors and events;

In a machine-coding project, coding rules are implemented in a computer program,
usually using extensive dictionaries which identify actors and events and then associate
these with specific codes (see Lehnert and Sundheim 1991, Gerner et al 1994). These
dictionaries are typically developed by coding a large number of test sentences from
the actual data and adding the appropriate vocabulary when the machines makes an
error.

When these three tasks have been completed, coding can be done. Generating a large
human-coded data set such as WEIS or COPDAB takes a number of years, during
which time intercoder reliability must be maintained despite the turnover in the coders.
Machine-coding is much faster – a computer program can code hundreds of events per
minute – but machine coding is restricted to simple event categories and cannot extract
more complicated types of information from a story.

Table 1 shows a sample of the lead sentences of reports on the Reuters newswire that
preceded Iraq’s invasion of Kuwait in August 1990.4 Generally each lead corresponds
to a single event, though some sentences generate multiple events. For example, the
report “July 23, 1990: Iraqi newspapers denounced Kuwait’s foreign minister as a
U.S. agent Monday” corresponds to an event in the WEIS event coding scheme: the
WEIS category 122 is defined as “Denounce; denigrate; abuse.” In this event, Iraq is
the source of the action and Kuwait is the target. Together, these generate the event
record “900723 IRQ KUW 122” where “900723” is the date of the event, IRQ is a
standard code for Iraq, KUW is the code for Kuwait, and 122 is the WEIS category.
Table 2 shows the Reuters stories converted to WEIS events.

Table 1
Reuters Chronology of 1990 Iraq-Kuwait Crisis

July 17, 1990: RESURGENT IRAQ SENDS SHOCK WAVES THROUGH GULF
ARAB STATES

Iraq President Saddam Hussein launched an attack on Kuwait and the United Arab
Emirates (UAE) Tuesday, charging they had conspired with the United States to
depress world oil prices through overproduction.

July 23, 1990: IRAQ STEPS UP GULF CRISIS WITH ATTACK ON KUWAITI
MINISTER

Iraqi newspapers denounced Kuwait’s foreign minister as a U.S. agent Monday, pouring
oil on the flames of a Persian Gulf crisis Arab leaders are struggling to stifle with a
flurry of diplomacy.

4The Reuters reports were downloaded from the NEXIS data service. The full set of reports
is considerably more extensive, particularly during the week prior to the invasion.
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July 24, 1990: IRAQ WANTS GULF ARAB AID DONORS TO WRITE OFF WAR
CREDITS

Debt-burdened Iraq’s conflict with Kuwait is partly aimed at persuading Gulf Arab
creditors to write off billions of dollars lent during the war with Iran, Gulf-based
bankers and diplomats said.

July 24, 1990: IRAQ, TROOPS MASSED IN GULF, DEMANDS $25 OPEC OIL
PRICE

Iraq’s oil minister hit the OPEC cartel Tuesday with a demand that it must choke
supplies until petroleum prices soar to $25 a barrel.

July 25, 1990: IRAQ TELLS EGYPT IT WILL NOT ATTACK KUWAIT

Iraq has given Egypt assurances that it would not attack Kuwait in their current
dispute over oil and territory, Arab diplomats said Wednesday.

July 27, 1990: IRAQ WARNS IT WON’T BACK DOWN IN TALKS WITH KUWAIT

Iraq made clear Friday it would take an uncompromising stand at conciliation talks
with Kuwait, saying its Persian Gulf neighbor must respond to Baghdad’s “legitimate
rights” and repair the economic damage it caused.

July 31, 1990: IRAQ INCREASES TROOP LEVELS ON KUWAIT BORDER

Iraq has concentrated nearly 100,000 troops close to the Kuwaiti border, more than
triple the number reported a week ago, the Washington Post said in its Tuesday
editions.

August 1, 1990: CRISIS TALKS IN JEDDAH BETWEEN IRAQ AND KUWAIT
COLLAPSE

Talks on defusing an explosive crisis in the Gulf collapsed Wednesday when Kuwait
refused to give in to Iraqi demands for money and territory, a Kuwaiti official said.

August 2, 1990: IRAQ INVADES KUWAIT, OIL PRICES SOAR AS WAR HITS
PERSIAN GULF

Iraq invaded Kuwait, ousted its leaders and set up a pro-Baghdad government Thurs-
day in a lightning pre-dawn strike that sent oil prices soaring and world leaders scram-
bling to douse the flames of war in the strategic Persian Gulf.

Source: Reuters
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Table 2
WEIS Coding of 1990 Iraq-Kuwait Crisis

Date Source Target WEIS Code Type of Action

900717 IRQ KUW 121 CHARGE

900717 IRQ UAE 121 CHARGE

900723 IRQ KUW 122 DENOUNCE

900724 IRQ ARB 150 DEMAND

900724 IRQ OPC 150 DEMAND

900725 IRQ EGY 054 ASSURE

900727 IRQ KUW 160 WARN

900731 IRQ KUW 182 MOBILIZATION

900801 KUW IRQ 112 REFUSE

900802 IRQ KUW 223 MILITARY FORCE

Event data analysis relies on a large number of events to produce meaningful patterns
of interaction. The information provided by any single event is very limited; single
events are also affected by erroneous reports and coding errors. However, important
events trigger other interactions throughout the system. For example while Iraq’s
invasion of Kuwait by itself generates only a single event with WEIS code 223 –
military force – the invasion triggers an avalanche of additional activity throughout
the international system as states and international organizations denounce, approve
or comment, so the crisis is very prominent in the event record.

D.3 The History of Event Data in Foreign Pol-
icy Analysis

Event data were originally developed by Charles McClelland in the early 1960s as a
bridge between the traditional approach of diplomatic history and the new quantitative
analysis of international politics advocated in the behavioral approach.5 McClelland
reasoned that history could be decomposed into a sequence of discrete events such
as consultations, threats, promises, acts of violence and so forth. Event data formed

5There is a fairly substantial paper trail in the development of events data sets, in particular
Azar, Brody and McClelland (1972) provide a series of papers coming out of Azar’s Michigan
State events data conferences in 1969,1970 and 1971; Burgess and Lawton (1972) also covers
this period. The early theoretical development of WEIS is thoroughly discussed in a series of
papers by McClelland (1967a, 1967b, 1968a, 1968b, 1969,1970); Azar’s early development of
COPDAB is also fairly well documented (for example Azar and Ben-Dak. 1975, Azar, Cohen,
Jukam and McCormick, 1972; Azar and Sloan, 1975).
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a link between the then-prevalent general systems theories of international behavior
and the textual histories which provided an empirical basis for understanding that
behavior. According to McClelland,

...International conduct, expressed in terms of event data, is the chief de-
pendent variable of international relations research. ... It is interesting
that a starting point is provided as readily by the ordering principle of
classical diplomatic history as by the basic concepts of general system
analysis. Thus, we may assert that the prime intellectual task in the
study of international relations is ... to account for the relations among
components of the international system by ... tracing recurring processes
within these components, by noting systematically the structure and pro-
cesses of exchange among the components, and by explaining, finally, the
linkages of within-component and between-component phenomena. Ob-
viously the classical definition of diplomatic history is less ponderous and
more literary than the general system definition of the task but both ...
carry about the same information and involve nearly the same range of
choices of inquiry and analysis. (1970,6)

During the 1960s and 1970s, several event data collections were assembled. The
COPDAB (Azar 1980, 1982; Azar and Sloan 1975) and WEIS (McClelland 1976)
data sets attempt to code all interactions by all states and some non-state actors such
as the United Nations and various national liberation movements; the COPDAB and
WEIS coding schemes have subsequently been used in a number of other data sets.
A variety of domestic and international event data were also collected in the context
of more general data sets such as Rudolph Rummel’s Dimensionality of Nations col-
lection (Rummel 1972), the World Handbook (Taylor and Hudson 1972) and various
internal conflict data sets collected by Ted R. Gurr (Gurr 1974); these usually focus
on a limited set of actions such as uses of force, domestic violence, or changes of gov-
ernment. The Comparative Research on the Events of Nations (CREON) data set
(Hermann et al 1977), which is specifically designed for the analysis of foreign policy,
was also developed during this period.

For a period in the late 1970s and early 1980s, event data were collected by United
States governmental agencies such as Department of State, Department of Defense
and various intelligence agencies (see Andriole and Hopple 1984; Hopple 1984; Hoople
et al 1984; Daly and Andriole 1980; Laurance 1990) and private political consulting
firms such as CACI Inc. The Department of State experimented with coding event
data for a small set of states in 1971 in its Foreign Relations Indicator Project (FRIP)
(see Lanphier 1975). The Pentagon’s Defense Advanced Research Project Agency
(DARPA) sponsored a large-scale project in the 1970s to develop event data models
for crisis forecasting and management, and in the early years of the Reagan admin-
istration, a major event data collection and analysis effort was undertaken by the
National Security Council staff in the White House.

These efforts apparently had little long-term impact on the formulation of foreign
policy, though many of these event data sets are now available in the archives of
the Inter-University Consortium for Political and Social Research at the University
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of Michigan and are used in research.6 Laurance (1990) analyzes the reasons for the
limited impact of event data on policy: these include the failure to coordinate the
event data projects with the analysts and policy-makers who were supposed to use
the data, the absence of guidelines on how event data could be used with traditional,
non-statistical sources of information, and the absence of user-friendly analytical tools.

Event data collection went into a hiatus in the mid-1980s, though the COPDAB and
WEIS data continued to be refined, other data sets such as CREON were used in
research, and some new data sets focusing on international crises – notably Russell
Leng’s Behavioral Correlates of War (BCOW; Leng 1987) and Frank Sherman’s SHER-
FACS (Sherman and Neack 1993) – were developed during this time. Large-scale event
data efforts were revived in the early 1990s in the second phase of the National Science
Foundation’s Data Development in International Relations project (DDIR), directed
by Dina Zinnes and Richard Merritt (see Merritt, Muncaster and Zinnes 1993). Rather
than simply extending the work of the 1970s, DDIR emphasized the development of
new approaches, with particular emphasis on exploiting the computing power available
in personal computers and using machine-readable news sources.

D.4 Event Data Sets

Event data sets fall into two general categories: Actor-oriented data sets record all
interactions between a set of actors for a specific period of time, for example the
Middle East 1949-1969. Episode-oriented sets look at the events involved in a specific
historical incident, usually an international crisis or use of force.

D.4.1 Actor-Oriented Data Sets

WEIS

The WEIS coding scheme classifies events into 63 specific categories; these are orga-
nized into 22 general categories such as “Consult,” “Reward,” “Protest,” and “Force”
(see Table 3). The general categories form a very rough cooperation-conflict contin-
uum. WEIS coding was the de facto standard used by the US government-sponsored
projects during the 1970s, and consequently a number of the data sets in the ICPSR
use the WEIS scheme.

The WEIS data set available at the ICPSR covers only eleven years (1966-1977) and
contains only about 90,000 events; the source text is The New York Times. Data
after 1977 have continued to be coded by McClelland and several of his students –
most recently Rodney Tomlinson at the US Naval Academy – but the full series is
not available in the public domain at the present time. DDIR has sponsored the

6The ICPSR has about two dozen international event data sets; most universities with
graduate programs are members of the ICPSR and have access to its archives. Some of
the more recent data sets discussed below – for example SAFED, GEDS, CASCON III and
SHERFACS – are not presently at the ICPSR; they can usually be obtained from the individual
researchers.
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development of a machine-coding system for WEIS (Gerner et al, 1994) which could
facilitate the generation of WEIS-coded data in the future.

Because most common statistical routines, such as regression analysis, use numerical
rather than categorical data, WEIS events are often averaged into numerical scores
before being analyzed. Vincent (1979) and Goldstein (1992) provide two such scales
that assign numbers on a cooperation-conflict continuum to each WEIS category;
Figure 2 was produced using Goldstein’s scale. WEIS codes can also be translated into
the COPDAB scale, though one cannot translate from COPDAB to WEIS because
COPDAB makes fewer distinctions in the type of event.

Table 3
Examples Of WEIS Event Codes

11. REJECT
111 Turn down proposal; reject protest demand; threat
112 Refuse; oppose; refuse to allow
12. ACCUSE
121 Charge, criticize, blame, disapprove
122 Denounce, denigrate, abuse
13. PROTEST
131 Make complaint (not formal)
132 Make formal complaint or protest
17. THREATEN
171 Threat without specific negative sanctions
172 Threat with specific nonmilitary negative sanctions
173 Threat with force specified
174 Ultimatum: threat with negative sanctions and time limit specified
18. DEMONSTRATE
181 Non-military demonstration; walk out on
182 Armed force mobilization, exercise and/or display

Table 4
Examples of COPDAB Event Codes

09 Nation A expressed mild disaffection toward B’s policies, objectives, goals,
behaviors with A’s government objection to these protestations; A’s
communiqué or note dissatisfied with B’s policies in third party

10 Nation A engages in verbal threats, warning, demands and accusations
against B; verbal, hostile behavior.

11 Nation A increases its military capabilities and politico-economic resources to
counter Nation B’s actions or the latter’s contemplated actions; A places
sanctions on B or hinders B’s movement in waterways or on land and attempts
to cause economic problems for B.
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COPDAB

The COPDAB data set is substantially larger in size and scope than WEIS, with
about 350,000 international events for the period 1948-1978. COPDAB uses a number
of different news sources rather than depending solely on The New York Times; in
particular it uses a variety of regional sources to cover events outside of North America
and Europe.7 In contrast to the categories in WEIS, COPDAB uses an ordered coding
scheme that goes from 1 to 16 (see Table 4) supplemented by a numerical cooperation-
conflict intensity scale developed by Azar and Sloan (1975). COPDAB coding also
classifies an event into one of eight types – for example symbolic, political, military,
economic or cultural.

Under DDIR sponsorship, a group at the University of Maryland directed by Ted R.
Gurr and John Davies is extending the COPDAB data set from 1990 to the present
(Davies and McDaniel 1993). Their project, the Global Event Data System (GEDS) is
based on the COPDAB framework but uses a much richer data format that preserves
much of the original text reporting the event; GEDS also codes a number of internal
political actors, particularly ethnic groups.

CREON

The Comparative Research on the Events of Nations data set (Hermann et al 1977;
East, Salmore and Hermann 1978) is specifically designed for the study of foreign policy
interactions. Its basic event coding scheme is similar to that of WEIS, but CREON in
addition codes over 150 variables dealing with the context of the event, related actions,
and internal decision-making processes. Unlike WEIS and COPDAB, CREON does
not code all interactions during a period of time: instead it covers a random sample
of time periods during 1959-1968 and a stratified sample of 36 nation-states which
contains a disproportionate number of developed and English-speaking countries. The
purpose of CREON is to study the foreign policy process, rather than foreign policy
output. In practice this means that CREON is better suited than WEIS or COPDAB
to studying the linkages between the foreign policy decision-making environment and
foreign-policy outputs for specific decisions, but it cannot be used to study policy
outputs over a continuous period of time or for countries not in the sample.

Other Actor-Oriented Event Data Sets

While WEIS, COPDAB and CREON are the largest actor-oriented data sets, a variety
of smaller sets exist. As noted earlier, the ICPSR has several regionally-specific,
WEIS-coded data sets dating from the 1970s, and additional regional data sets are
being collected at the present time. The South Africa Event Data set (SAFED; van
Wyk and Radloff 1993) is a WEIS-coded collection focusing on southern Africa for the
period 1977-1988; it has unusually dense coverage of non-state actors such as guerrilla
movements. Ashley (1980) assembled a data set focusing only on the interactions of

7Because WEIS and COPDAB are based on different sources, they do not have a high
degree of overlap: International Studies Quarterly (1983) contains two analyses of this along
with a commentary by McClelland.
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the superpowers – the USA, USSR and PRC – for 1950-1972; this contains about
15,000 events and is coded with a COPDAB-like scale.

D.4.2 Episode-Oriented Data Sets

BCOW

The Behavioral Correlates of War data set (Leng 1987) codes a sample of 38 major
international crises over the period 1816-1975; roughly half of these crises culminated
in war and the other half were resolved without war. Most of the crises (31 out of
38) are in the 20th century; about a third (12) are post-WWII; and many of the
crises preceding WWI and WWII are included in the sample. BCOW’s event codes
are an expanded version of the WEIS scheme containing about 100 categories and
differentiating more clearly between verbal, economic and military behavior. Leng
(1993b) contains an extensive analysis of this data set.

BCOW uses multiple sources of information, including newspaper accounts, diplomatic
histories, and chronologies (Leng 1987:1). The number of events in each crisis range
from 120 events in the 1889-90 British-Portugal crisis in southern Africa to 2352 events
in the 1956 Suez crisis. The ICPSR data set is accompanied by a very extensive coding
manual that would allow a researcher to code additional crises in a manner consistent
with the original data; it also includes some specialized software that can be used to
analyze the data.

Table 5
Examples of BCOW Event Codes

Military Actions (sample from a total of 36 categories)
11212 International Peacekeeping Force
11333 Alert
21143 Change in Combat Force Level
31133 Fortify Occupied Territory
Diplomatic Actions (sample from a total of 35 categories)
12121 Negotiate
12362 Declare Neutrality
12213 Punish of Restrict Foreign Nationals
32151 Grant Independence to Colony
Economic Actions (sample from a total of 20 categories)
13121 Economic Negotiation
23121 Sell or Trade
23231 Pay for Goods or Services
Unofficial Actions (sample from a total of 11 categories)
14251 Proforeign Demonstration
14213 Antiforeign Demonstration
14152 Hostage Taking
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CASCON

The Computer-Aided System for the Analysis of Local Conflicts system (CASCON)
codes the characteristics of 66 internal and international conflicts during the post-
World War II period. The analytical framework is based on a study by Bloomfield
and Leiss (1969) and is organized around six predefined conflict phases ranging from
the issues leading to the initiation of the dispute to the resolution of the dispute.
CASCON codes 540 “factors” for each crisis; some of these describe specific types
of events, others describe contextual characteristics of the crisis such as whether the
parties to the conflict are dependent on outside aid.

The current version of the data set, CASCON III (Bloomfield and Moulton 1989) is
an integrated “decision support system” designed to help decision-makers compare
current crises with the historical data on the 66 CASCON crises; the system runs on a
personal computer. The CASCON III system contains the conflict data set, a variety
of analytical tools that can be used to compare conflicts, and a subsystem for entering
new cases into the database. An earlier version on the data set, containing only 52
cases during the 1945-1969 period and without the analytical software, is available
from the ICPSR.

SHERFACS

The SHERFACS data set (Sherman and Neack 1993) codes over 700 international dis-
putes and almost 1000 domestic disputes in the 1945-1984 period. It combines several
different coding schemes, including COPDAB event codes, the CASCON crisis phase
structure, and a variety of conflict management variables originally used in the Butter-
worth (1976) data set in crisis mediation. SHERFACS is particularly strong on coding
nonstate actors such as ethnic groups, transnational actors such as intergovernmental
organizations, and non-national actors such as multinational corporations.

An early version of SHERFACS is available from the ICPSR (Alker and Sherman
1982, 1986); the current version is being completed as part of the DDIR project.
While SHERFACS is not part of an integrated software system like CASCON, John
Mallery and Sigrid Unseld (1992; Mallery forthcoming) have been developing special-
ized software for analyzing the data and deriving general rules from it. This software is
based on artificial intelligence techniques and could be generalized to work with other
types of event data.

Other Episode-Oriented Event Data Sets

As noted above, several other data collections available from the ICPSR such as The
World Handbook contain some limited amounts of event data. Another example is
the PRINCE Project data set (Coplin, O’Leary and Shapiro, n.d.). This data set was
originally collected in conjunction with a computer simulation project and contains a
small set of event data dealing with political issue positions for the period 1 January
1972 to 30 June 1972. Other data sets have been collected for the study of a specific
crisis: for example Lebovic (1993) coded events during the period prior to the 1991
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Gulf War (2 August 1990 to 16 January 1991) in order to analyze the impact of foreign
policy “momentum” in that crisis.

D.5 Applications

Event data have been used in a variety of different studies in foreign policy analysis.
This section will briefly discuss five applications that illustrate some of the different
analytical techniques employing event data.

D.5.1 Reciprocity in Superpower Interactions

In an extensive analysis reported in their book Three Way Street, Joshua Goldstein and
John Freeman (1990) combine three event data sets – WEIS, COPDAB and Ashley’s
superpower data – to create a time series of interactions between the USA, Soviet
Union and the People’s Republic of China extending from 1948 to 1986. This data is
analyzed using a statistical technique called vector autoregression, which assesses the
effects of a change in one variable in the system on other variables.

The study is important in two respects. First, the 40-year time series clearly displays
the major shifts in the relationships between three major powers, such as the Cold
War of the 1950s between the USA and USSR, the détente period of the early 1970s
and the Reagan-Brezhnev “New Cold War” of the early 1980s. Similarly, the effects
of the Cultural Revolution and the Nixon rapprochement with China can be seen in
the US-Chinese relationship.

Goldstein and Freeman’s statistical findings show that most of the interactions be-
tween the superpowers were reciprocal – each state received interactions from other
superpowers similar to those it projected to them. This pattern of reciprocity had
been predicted by a number of theories, and more generally the study of reciprocal be-
havior has been a major focus of event data research.8 The study also showed a great
deal of inertia in the superpower relationships: the level of cooperation or conflict was
maintained about the same level from year to year, changing only slowly.

D.5.2 Political Influence in Arms Transfers

Schrodt (1983) studies the effects of the international sale of weapons on international
behavior using event data. One key concern in this arms transfer research is the “arms
and influence” relationship: does the supplier of weapons gain political influence over
the recipient?

The study uses data from the Stockholm International Peace Research Institute on
weapons sales from the USA and USSR to a number of Middle Eastern countries; the
COPDAB data set is used to measure cooperative and conflictual behavior between the

8See for example Richardson, Kegley and Agnew 1981, Ward 1982, Dixon 1986, Goldstein
1991 and van Wyk and Radloff 1993.
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supplier and recipient. The statistical technique was crosscorrelation: the correlation
between the level of sales and the cooperative or conflictual behavior at times before
and after the arms transfer.

Figure 3
Crosscorrelation of Arms Transfers and International Cooperation
from Recipient to Supplier
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This technique was successful in demonstrating a number of features of the arms
and influence relationship. As expected, there was no significant influence prior to
the transfer – except during the one or two years prior to the transfer when it was
probably being negotiated – but the data showed statistically significant cooperation
lasting for about five years after the transfer.

The contrast between the USA and USSR was even more interesting. As expected,
the cooperation of recipients with the Soviet Union was considerably higher than that
with the United States: the USSR gained more cooperation, in the short term, from
its recipients. However, in the longer term, after about five years, the Soviet Union
also had significantly increased conflict with its recipients, whereas arms transfers did
not significantly change conflictual behavior towards the United States. This results
for the Soviet Union had been anticipated in some of the nonstatistical literature (see
for example Pierre 1982:81-82), where the tendency of the Soviet Union to alienate its
arms recipients was known informally as the “Ugly Russian problem.”



APPENDIX D. EVENT DATA RESEARCH 156

D.5.3 Interdependence of International Interactions

Schrodt and Mintz (1988) use the COPDAB data set to study interactions between six
Middle Eastern states: Jordan, Syria, Saudi Arabia, Kuwait, Iraq, and Iran during the
period 1948 to 1978. The study looked at the probability that an interaction between
one pair of nations – for example Syria to Iran – would trigger other interactions, for
example Iran to Syria or Saudi Arabia to Iraq.

The study reached a number of conclusions – for example we found that interactions
almost always increase, rather than decrease, the probability of other interactions.
However, in retrospect our most interesting finding was the prominent role of Kuwait:

... when some interaction occurs with Kuwait, this interaction dispropor-
tionately sets off other interactions in the system. This initially seems
counterintuitive because Kuwait is the least powerful of the states we are
studying, though that status may be the reason Kuwait is so important.
If this characteristic holds generally, we may find that minor powers are
more important in determining interaction interdependence than major
powers. (1988:227-228)

This was written in 1984, six years before the 1990-1991 Iraq-Kuwait crisis. The
importance of Kuwait was deduced exclusively from the event data itself, rather than
from a traditional political analysis.

D.5.4 Decision-Making Units and Foreign Policy

Hermann and Hermann (1989) use the CREON data set to study the effect that the
type of foreign policy decision-making unit has on the character of foreign policy. The
types of decision-making unit studied are “predominant leader,” “single group,” and
“multiple autonomous actors;” these are described elsewhere in this volume. The
nation-states in the CREON data set are coded into these categories according to
an explicit set of coding rules; in many cases the category varies due to changes in
governments and in some countries (e.g. Switzerland) differs depending on the foreign
policy issue. The CREON event data provided the dependent variable, foreign policy
behavior, which was coded for affect, commitment and the choice of instruments of
statecraft, and the study also controlled for whether the unit was self-contained or
could be influenced externally.

The results of the study are clearest on the issue of affect. Hermann and Hermann
report:

The single group decision units engaged in the most extreme behavior
of the three types, evidencing the most conflictual behavior. Multiple
autonomous actors were the least conflictual, with predominant leaders in
between. ... Also as hypothesized, self-contained decision units [a control
variable] were significantly more conflictual – that is, more extreme in
their behavior – than the externally influenceable units. (1989:380)
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In the areas of commitment and choice of instruments, the results are more complex,
with interaction effects between the type of decision unit and the control variables.
For example, “predominant leaders in self-contained units (the insensitive leaders) use
more economic and military instruments of statecraft than those in the externally
influenceable units (the sensitive leaders).” (1989: 382).

D.5.5 Influence Strategies in Militarized Interstate Con-
flicts

Leng (1993a) used the BCOW data to study the relationship between the bargaining
strategies employed by states in a dispute and the outcome of the dispute. Starting
with the 40 crisis in BCOW and eliminating those crises where no negotiations pre-
ceded war, Leng classifies the influence strategies used by 70 parties to the crises into
three categories:9

Bullying: “the actor employs increasingly severe negative inducements until the other
side complies with its demands;”

Reciprocating: “Tit-for-Tat responses to the actions of the other side, along with
occasional unilateral cooperative initiatives;”

Trial-and-Error: “the actor simply adjusts its choice of inducements based on the
target’s response to the preceding influence attempt; ...inducements that pro-
duce positive responses are repeated and inducements that produce negative
responses are changed.”(1993a:5)

These strategies were identified using the events recorded in the BCOW data set.

Figure 4 shows the relationship with the strategies used and the crisis outcomes. As
Leng observes:

The comparison between escalating coercive bullying strategies and recip-
rocating strategies is particularly striking. Escalating bullying strategies
leads to war or submission in 69% of the cases, and to a victory or com-
promise in 27% of the cases; whereas reciprocating influence strategies
leads to a victory or compromise in 64% of the cases, and to war or sub-
mission in 28% of the cases. When bullying strategies are successful, they
do tend to result in diplomatic victories (23%), rather than compromises
(4%), but reciprocating strategies also achieve diplomatic victories in 20%
of the cases ... along with compromises 44% of the time. (1993a:6)

The trial and error strategy is intermediate between the other two strategies, producing
more war and less compromise than the reciprocating strategy but less war and more
compromise than the bullying strategy. Leng’s results reinforce the theoretical results

9Leng also identifies two additional cases where a party used an “appeasement” strategy
– both resulted in defeat – and two cases where a party used a “stonewalling” strategyboth
resulted in war.
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Figure 4
Influence Strategies and Dispute Outcomes
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of Axelrod (1984) and a number of other researchers on the value of tit-for-tat strategies
in conflict situations.

Problems with Event Data

Event data, like any data used in social research, contain errors due to their source,
coding techniques and other factors. The advantages and disadvantages of event data
have been extensively studied and discussed; the field is nothing if not introspective.10

The following is a brief survey of these issues.

D.5.6 Coding Systems

Reflecting the Cold War environment in which they were first developed, the existing
coding systems, particularly WEIS and COPDAB, focus primarily on military and
diplomatic interactions between nation-states. They provide considerably less detail
on economic interactions, newer issues such as refugees, multilateral operations, and
environmental regulation, and non-state actors such as international organizations and
sub-national groups.11 This is not a problem if one is primarily interested in diplomatic

10See for example Andriole and Hopple 1984, Azar and Ben-Dak 1975, Brody 1972, Burgess
and Lawton 1972, Gaddis 1987, International Studies Quarterly 1983, Laurance 1990, Mc-
Gowen et al. 1988, Merritt, Muncaster and Zinnes 1993, Munton 1978, Peterson 1975, Rosenau
1974, and Sigler, Field and Adelman 1972.

11Some of the nonstate actors active in the 1970s are coded – for example the United
Nations, Irish Republican Army and Palestine Liberation Organization – but the bulk of the
interactions in the data sets involve nation-states.
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and military interactions between nation-states, but many contemporary studies have
a broader focus.

Because of the substantial expense involved with the human coding of events, little
experimentation has been done with the implications of alternative coding schemes and
the idiosyncrasies of the existing codes have been frozen into place. For example, WEIS
has separate codes for a “Warning” and “Threat,” though these are often synonymous,
and it has only three categories for the use of force, whereas BCOW recognizes about
twenty.

Despite its popularity in statistical studies, the conflict-cooperation continuum used
by COPDAB and the scaled transformations of WEIS is problematic because there
is considerable evidence that conflict and cooperation are independent dimensions in
international behavior. Nations that have extensive cooperation, for example in trade
or alliances, also tend to have greater conflict than nations that are mutually isolated.

Most and Starr (1984) have identified the general empirical problem of “foreign policy
substitutability”: different actions in foreign policy may have the same general effect.
For example, Israel and the Palestine Liberation organization agreed to mutual recog-
nition in 1993 following secret talks mediated in Norway and a public ceremony at the
White House, but one could as easily imagine a different set of circumstances where the
recognition occurred after secret talks at the United Nations and a public ceremony
in Egypt. Depending on the theoretic issue being discussed, these two scenarios might
or might not be considered equivalent. The effect of an event data coding scheme is to
define a set of equivalent foreign policy actions and assign them identical codes, but
the same set of codes may not work equally well for all theoretical questions.

In all likelihood, there will be greater experimentation with new coding systems in
the future, particularly as machine-coding systems are developed. The reports of
the early event data efforts by researchers such as McClelland and Azar show they
had no intention of freezing into place a single standard for event coding; instead
they expected that their coding schemes would refined through experience and further
theoretical developments. As the cost of coding drops, such experimentation and
refinement should be possible.

D.5.7 Source Bias

One of the most widely studied problems in event data collection are the editing and
coverage biases introduced by the journalistic sources. One of the earliest systematic
studies of this problem was Doran, Pendley and Antunes (1973), who found a dramat-
ically higher level of reported violence in Latin America if they used regional sources
rather than international sources. Azar (Azar and Ben Dak, 1975:4) found only a 10%
overlap between events reported in The New York Times and Middle East Journal,
with the MEJ more likely to report cooperative events. Hoggard (1974) generally finds
only 10% to 20% overlap between The New York Times Index and regional sources;
Gerner et al (1994) report a similar low level of overlap when comparing Reuters with
two specialized regional sources.

The interactions of some 180 nation-states are necessarily complex, and it is unlikely
that any event data set will capture more than a few percent of all political activities.
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However, some events, such as the outbreak of war, are more important in determining
international behavior than others, and the likelihood of missing an event is probably
inversely proportional to its importance: the more important an event, the more likely
it will be reported.

Researchers have taken two different approaches to this problem. Some projects, such
as COPDAB, SAFED and BCOW, have used multiple sources to try to capture as
many events as possible. This effort is still limited by the time and resources available
to the project but as a greater number of machine-readable sources become available,
the costs of coding from multiple sources has decreased. Other projects, such as
WEIS, CREON and GEDS, have relied on a single source – The New York Times,
Deadline Data, and Reuters respectively – under the assumption that by maintaining
a consistent sources, the changes in the patterns of interaction will be more evident.

D.5.8 Additional Variables

All event data sets have in common the use of a basic

<date><source><target><event>

format, but they differ substantially in whether additional information is coded. WEIS
codes only the simple format and an optional “arena” code; COPDAB adds an “issue
type” code (e.g. diplomatic, military, economic). BCOW and GEDS, in contrast, add
dozens of additional variables; SHERFACS and CREON contain hundreds of factors.

Most of this additional information could be categorized as providing “context” for
the event. For example, what sub-national decision unit was responsible for the event?
What other events were related to it; what other actors were involved? If the event
occurs during a crisis, is it part of an escalation or de-escalation? What is the under-
lying intent of the event, if that can be inferred? In some of the data sets, particularly
those dealing with crises, this context, rather than the pattern of discrete events, is
the primary focus of the data collection.

The motivation behind adding contextual information to an event record is clear: hu-
man decisionmakers perceive events in a very context-rich manner. Human associative
memory provides decision-makers with immediate linkages to other events, provides
a means of inferring motive and so forth. However, whether one can systematically
analyze contextual information is an open issue – after all, if one really wants context,
one should be reading the original text sources and not bothering with event data in
the first place. Most of the existing applications of event data have not used the con-
textual information and instead have focused on very crude aggregate measures such
as moving averages, though this is changing as more sophisticated analytical tools,
such as those used with CASCON and SHERFACS, are developed.

D.5.9 Future of event data

While the concept of event data is nearly three decades old, the approach has just
begun to enter its second generation. Most of the event data research efforts to date
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have been based on concepts and techniques little changed since 1970. However,
fundamental changes in the information processing capabilities available to researchers
now make possible analytical techniques that were impossible when events data were
first developed. Inexpensive personal computers have already passed the speed and
mass-storage capacities of university mainframes available in the 1970s, and are rapidly
approaching the capacities of supercomputers available in the 1980s. At the same time,
many of the sources traditionally used for event data coding have become available in
machine-readable form. Consequently, the past may be a poor guide to the future and
what was practically impossible a decade ago may be trivial a decade from now. The
impact of increased computing power is most clearly reflected in machine coding and
new analytical methods.

Events data are very different from the data used in most statistical studies in the
social sciences (see Schrodt forthcoming). The conventional statistical repertoire of
the social sciences has almost no techniques explicitly adapted to this type of data
and, as Achen (1987) points out, there has been virtually no original statistical work
to fill these gaps. To date most of the effort in event data analysis has been devoted
to carefully constructing and implementing coding schemes rather than systematically
exploring what one can do with the data once it has been collected.

McClelland originally envisioned event data as being analyzed as patterns of discrete
events.12 These efforts were unsuccessful: after some years of work with events data
focusing on several crises, McClelland concluded,

It proved relatively easy to discern event patterns and sequences intu-
itively. We found we could follow the successions of action and response
in flow diagram form. Stages of crisis and the linkage of event types to
temporary status quo situations also were amenable to investigation. We
were defeated, however, in the attempt to categorize and measure event
sequences. This was an early expectation that was disappointed by the
data which showed too few significant sequences to support quantitative
or systematic treatment. (1970:33)

With the perspective of two decades of hindsight, the information processing tech-
nology and sequence analysis techniques available to McClelland were woefully inad-
equate. McClelland writes of analyzing hundreds or at most thousands of events; a
contemporary events data researcher has available hundreds of thousands of events
and would be capable of working with millions.

While many studies of event data use still relatively simple methods, in recent years
a variety of more complex techniques have been proposed. Some of these are based
on advanced statistical methods such as vector autoregression (Goldstein and Free-
man 1990), Poisson regression (King 1989) and event history analysis (Allison 1984).
Another set of techniques for event data analysis is found in the computational mod-
elling literature derived from research in artificial intelligence (Hudson 1991; Unseld
and Mallery 1992); techniques designed to study molecular sequences (Sankoff and
Kruskal 1983) has inspired some other methods; and some computation methods are

12Azar, in contrast, saw event data fundamentally in terms of numerical measures; see for
example Azar and Ben-Dak (1975). Nonetheless, virtually all event coding schemes other than
COPDAB and its derivatives (e.g. GEDS) use categorical coding.
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being specifically designed to analyze sequences of social and political events (Heise
1988, Schrodt 1990). Most of these new methods require substantial amounts of com-
puting power and would have been impractical a decade ago, so in the future it may be
possible to do considerably more systematic analysis with event data than was possible
in the past.

D.5.10 Conclusion

The event data approach demonstrates that it is possible to systematically code a very
large number of individual foreign policy interactions and then use that information
to test general hypotheses about foreign policy behavior using statistical techniques.
These hypotheses may deal with national-level characteristics (Hermann and Hermann
1989); the effectiveness of specific strategies (Schrodt 1983, Leng 1993); patterns of
interaction within a subsystem (Schrodt and Mintz 1988, Goldstein and Freeman 1990,
van Wyk and Radloff 1993); or patterns in a type of behavior such as a crisis (Sherman
and Neack 1993).

The existence of an assortment of event data sets in public archives such as the ICPSR
simplifies and systematizes the measurement of many characteristics of interest to
analysts of foreign policy behavior. Event data provide a means of controlling, for
example, for the effect of the USA-USSR détente in studying the foreign policy of the
United States or the effects of the Camp David agreements on the foreign policy of
Israel. While event data are an imperfect indicator, they are still likely to provide
a better measure than alternatives such as assuming the détente period coincided
with the Nixon administration or that the Camp David agreements had an immediate
impact. The behaviors measured by event data may also be at the core of a study:
this is particularly true for CREON and the episode-oriented data sets.

The early work in event data analysis was confined to methods that by contemporary
standards were slow, laborious and oftentimes of dubious statistical value. The quan-
tum leap in information processing capability in the past decade has clearly opened
the way for a distinct second-generation of event data analysis where machine-assisted
coding replaces human coding, computer-intensive sequence analysis methods replace
descriptive statistics and contingency tables, and analytical software designed to work
with specific data sets – currently seen with BCOW, CASCON and SHERFACS –
supplements the use of standard statistical packages. The implications of this change
for the field of foreign policy analysis are as yet unclear, but they are potentially
profound.
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