
CIVET Documentation
Release beta-0.9.1

Philip A. Schrodt
Parus Analytics LLC

Charlottesville, VA USA
schrodt735@gmail.com

August 22, 2016

CONTENTS

1 Introduction 3
1.1 Program Navigation Placeholders . 3
1.2 Status of the Program: 31 August 2015 . 4
1.3 Status of the Program: August 2016 . 4
1.4 Documentation . 5

2 Installing CIVET 7
2.1 Modifying the default installation . 7

3 Authentication 9
3.1 Creating a superuser . 9
3.2 Additional notes . 9

4 Home Page Options 11
4.1 File selection . 11

5 CIVET Coding Form Templates 13
5.1 Simple Template-Based Data Entry Form . 13
5.2 Command formats . 13
5.3 Specifying variables . 15
5.4 Commands only relevant in workspaces . 16
5.5 Data entry fields . 17
5.6 Linking fields . 19
5.7 Additional web page formatting . 20
5.8 Advanced formating options . 21

6 CIVET Workspaces 23
6.1 Workspace Management . 24
6.2 User-specified annotation vocabulary using category . 25
6.3 Automatic annotation/skip editing mode only: . 26
6.4 Additional information on categories . 27

7 Annotation and Editing Collections 29
7.1 Comments on annotation and editing . 31

8 Coding and Text Extraction 33
8.1 Note on deleting texts . 35

9 Preferences 37
9.1 Programming note . 38

10 Projected Features 39

i

11 Appendix 1: Sample Template File 41

12 Appendix 2: Input Format 43
12.1 Collection fields . 43
12.2 Category fields . 43
12.3 Text fields . 43
12.4 Case fields . 44
12.5 Date formats . 45
12.6 UTF-8 Encodings . 45
12.7 Sample File . 45

13 Appendix 3: Supporting Files and Source Code Settings 47
13.1 Files in /static/djciv_data . 47
13.2 Additional settings that can be changed in civet_settings.py 47
13.3 Documentation . 48

14 Appendix 4: Installing in AWS-EB and Docker 49
14.1 Amazon Web Services Elastic Beanstalk . 49
14.2 Docker . 51

ii

CIVET Documentation, Release beta-0.9.1

Preface

This is the documentation for the CIVET—Contentious Incident Variable Entry Template—data entry system. CIVET
was developed under the NSF-sponsored project titled “A Method for Leveraging Public Information Sources for
Social Science Research” which is creating tools to improve the efficiency of data generation in the social sciences,
with an initial focus on coding event data in the domain of contentious politics.

The system is deployed as a Django application; it should be possible to get this working by installing Django on a
local machine and copying the directory djcivet_site.

We are very interested in feedback on this system, including any bugs you encounter (please let us know what operating
system (e.g. Windows, OS-X) and browser (e.g. FireFox, Explorer, Chrome) you were using), aspects of the manual
that are unclear (and features that appear too complex), and additional features that would be useful. Please send any
suggestions to schrodt735@gmail.com.

Link to the software on GitHub

Acknowledgements

The development of CIVET is funded by the U.S. National Science Foundation Office of Multidisciplinary Activities in
the Directorate for Social, Behavioral & Economic Sciences, Award 1338470 and the Odum Institute at the University
of North Carolina at Chapel Hill with additional assistance from Parus Analytics. This documentation is licensed
under a Creative Commons Attribution-NonCommercial 4.0 International License; CIVET is open source and under
the MIT license. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

CONTENTS 1

https://www.djangoproject.com/start/overview/
mailto:schrodt735@gmail.com
https://github.com/civet-software
http://www.odum.unc.edu/odum/home2.jsp
http://parusanalytics.com/

CIVET Documentation, Release beta-0.9.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is the documentation for CIVET 1—Contentious Incident Variable Entry Template—customizable data entry
system. CIVET was developed by the NSF-sponsored project titled “A Method for Leveraging Public Information
Sources for Social Science Research” which is creating tools to improve the efficiency of data generation in the social
sciences. The project had an initial focus on coding event data in the domain of contentious politics, but we expect
that these tools will be relevant in a number of data-generation domains.

The core objective of CIVET is to provide a reasonably simple—yes, simple—set of commands that will allow a user
to set up a web-based coding environment without the need to master the likes of HTML, CSS and Javascript. As
currently implemented, the system is a rather ugly prototype; it will also be evolving as we add additional elements.
Nonetheless, the system should now be useable for coding.

CIVET is implemented in the widely-used and well documented Python-based Django system 2 which is widely
available on various cloud platforms: a rather extended list of “Django-friendly” hosting services can be found at

https://code.djangoproject.com/wiki/DjangoFriendlyWebHosts

The complete CIVET code is licensed as open source under the MIT license and provided on GitHub at
https://github.com/civet-software .

CIVET currently has two modes:

Coding form template: This is a template-based for setting up a web-based coding form which implements several
of the common HTML data entry formats and exports the resulting data as a tab-delimited text file. This is fully
functional and should be useable for small projects.

Text annotation/extraction: This uses CIVET “workspaces” which combine related texts, their metadata, and the
coding form. Workspaces allow for manual and automated text annotation, then the ability to extract various
types of information into the fields of a coding form.

1.1 Program Navigation Placeholders

CIVET is still under development and not all of the options have been fully implemented. If you see a page with a
message of the form

The option [something] has yet to be implemented. Use the back arrow
in your browser to return to the previous screen.

you have encountered one of those options: as noted, just use the “Back” option in your browser to return to the
previous screen. These are primarily in the “Workspace Management” papge.

1 http://en.wikipedia.org/wiki/CIVET
2 An earlier prototype was implemented in the Flask framework: see Appendix 4

3

https://code.djangoproject.com/wiki/DjangoFriendlyWebHosts
https://github.com/civet-software
http://en.wikipedia.org/wiki/CIVET

CIVET Documentation, Release beta-0.9.1

1.2 Status of the Program: 31 August 2015

The NSF funding for the project ended on this date. At this point, all of the documented features of the program should
be working except as noted above. However, we are just beginning the process of operational field testing and it is
likely—which is to say, inevitable— that some additional bugs will be found, hence this is still considered “Beta-0.9”
rather than “1.0.” We currently have two field tests underway, and are hoping to get some additional ones going, and
will be posting bug fixes to GitHub promptly as these appear and are resolved.

At present, we have not developed any software for generating the workspace files, though we expect to have at least
a couple programs available in the next few months. The problem here is that identifying the various metadata and
components in a set of texts is highly specific to the text source, and to date we’ve not found general solutions for this.
As noted in the final chapter of this document, over the next year or so we will be seeking additional funding for tool
development for these “front-end” tasks, though given the very slow pace of the public funding cycle, this is unlikely
to occur until late in 2016 at the earliest. In the meantime, we will be leveraging tools developed in existing projects
and, of course, would very much appreciate the contribution of any ancillary tools that the user community develops,
particularly for common sources such as Lexis-Nexis, Factiva, ProQuest, LDC Gigaword, and various news feeds and
social media.

1.3 Status of the Program: August 2016

Over the past year, CIVET has been used in two projects, though both with my assistance in generating the YAML
files and with some additional customization, much of which has been incorporated into the general system.

To my knowledge, however—and if you know of some project using this, please let me know—it has not been used
for the originally intended purpose of providing a platform which would allow someone with relatively limited pro-
gramming knowledge to create a web-based form. I suspect this is due to one or more of the following factors:

• The process of getting Django installed, while thoroughly documented, apparently can require some experimen-
tation and tweaking. That said, one of the projects decided to install Django on laptops used by the coders rather
than through a server: this allowed the coders to work anywhere.

• When using workspaces, which allow access to the most sophisticated parts of the system, the texts must be
converted to the YAML format, a task for which I’ve yet to see a general solution and almost certainly requires
Python, perl or Java programming skills

• Realistically, there are only a small number of new projects starting in any given year which are sufficiently
large that existing tools such as spreadsheets or Google Forms are inadequate. And many of those, of course,
will have resources to directly develop customized pages rather than working within the constraints of CIVET

So, this is essentially just an open-source version of a codebase that I can customize to generate coding forms. Which
I’m realizing is probably pretty much what about 95% of open-source projects are, though that still gives the client a
whole lot more knowledge and power than they have with a proprietary system, even if they never change a line of
code. Whatever.

Some random observations from those two deployments:

• Additional customization of the code has gone quite smoothly, even allowing for the inevitable decay of my
comprehension of the system. Granted, even when I’ve forgotten the details of the code I’m still working with
my programming idioms, but it does seem like as a base, this is quite solid. The same can be said for the YAML
workspace format.

• Neither of the two installations made any use of the manual annotation, and in the second, the
NEVER_ANNOTATE option was added to bypass this entirely: annotation is either handled automatically using
vocabulary files, or directly putting the HTML into the YAML files.

4 Chapter 1. Introduction

CIVET Documentation, Release beta-0.9.1

• More generally, though completely expected, the deployment have generated a number of interesting ideas for
new features that did not emerge in the abstract design phase. I’ve also left in some custom code—commented-
out or otherwise deactivated— that could be used for examples of further possible extensions.

• On two occasions over the past year there were changes to Django that required minor changes—one or two
lines of code— to CIVET in order to keep it running. Unsurprisingly, we have also found that Django is more
likely to be fully compatible with up-to-date hardware and operating systems: in particular, one project ran into
some issues running it on some old copies of Windows. Once again, this is less of a turn-key system than I’d
hoped.

1.4 Documentation

Documentation is maintained using the Sphinx system, which provides both an on-line version and a reasonably-well-
formatted PDF version. There are links to both of these compiled versions on the home page; the .rst source texts
for the documentation are in the directory djcivet_site/docs. That directory contains a Sphinx Makefile so revisions
can be compiled using the standard command make html latexpdf.

The on-line documentation currently resides at the site http://civet.parusanalytics.com/civetdocs/; 3 a PDF version can
be downloaded by clicking the Download PDF link on the home page. 4

3 This is a bug, not a feature: there is presumably a way of accessing these at djcivet_site/docs/_build/html/, or somewhere else within the
djcivet_site/ directory in a manner that has them correctly rendered, but I haven’t figured it out yet. Fixes are welcome.

4 This is handled in views.download_pdfdocs(): it first looks for the PDF version of the documentation in docs/_build/latex/civetdoc.pdf,
which is where the most current version is likely to be located when the documentation was produced using the make latexpdf command in the
docs/ directory. If that isn’t present, it checks the /static/ directory: this can be used in deployments in order to avoid uploading docs/. If neither is
available, it gets the copy posted at http://civet.parusanalytics.com/, which may or may not correspond exactly to the version being used depending
on what modifications have been made. The command make movepdf will copy civetdoc.pdf from _build/latex to /static/

1.4. Documentation 5

http://http://sphinx-doc.org/
http://civet.parusanalytics.com/civetdocs/index.html
http://civet.parusanalytics.com/civetdocs/
http://civet.parusanalytics.com/

CIVET Documentation, Release beta-0.9.1

6 Chapter 1. Introduction

CHAPTER

TWO

INSTALLING CIVET

To date we’ve only installed the system on Macintosh computers (OS-X), though the only difference between a Mac-
intosh installation and other installations should be the installation of the Django system.

On Macintoshes running OS-X 9 and 10, the required Python 2.7 comes pre-installed. The pip installation program
may also be pre-installed—I’m having trouble determining this from the Web, and forget whether I had to install it
when I last upgraded—but if not, install that.

1. In the Terminal, run sudo pip install Django: you will need administrative access to do this.

2. Download the CIVET system from https://github.com/civet-software/CIVET-Django, unzip the folder and put
it wherever you would like

3. In the Terminal, change the directory so that you are in the folder Django_CIVET/djcivet_site

4. In the Terminal, enter python manage.py runserver

5. In a browser, enter the URL http://127.0.0.1:8000

At this point you should see the CIVET home screen 1

2.1 Modifying the default installation

Because CIVET is still in beta, the version on GitHub is the one being used for development. To deploy the system
for active coding, you will probably want to make the following changes:

1. In the file djcivet_site/djcivet_site/settings.py, set DEBUG = False. This will

It is appropriate to note the Django documentation advice on this:

Never deploy a site into production with DEBUG turned on.

Did you catch that? NEVER deploy a site into production with DEBUG turned on.

As the Django documentation discusses in detail, with DEBUG = True any errors will generate an error
page containing extensive internal detail about your site. With DEBUG = False, the user just sees a
Page not found error.

1 If you see a log-in page requesting a user name and password, the log-in requirement has been activated: see the “Authentication” chapter for
details on how to use (or deactivate) this.

7

https://github.com/civet-software/CIVET-Django
http://127.0.0.1:8000
https://docs.djangoproject.com/en/1.8/ref/settings/

CIVET Documentation, Release beta-0.9.1

8 Chapter 2. Installing CIVET

CHAPTER

THREE

AUTHENTICATION

Django famously includes, “out of the box”, a very robust system for handling user authentication and permissions.
Except for a few minor modifications such as changing the web page headings and providing vaguely informative mes-
sages for log-in failures, CIVET simply implements the default version of this, so you can be guided the instructions
at https://docs.djangoproject.com/en/1.8/topics/auth/.

Authentication is controlled by the civet_settings.py global variable REQUIRE_LOGIN. By default, this is set to True
when PRODUCTION_MODE = True and False otherwise. If you enter the name of the site without any additional
arguments, the program will go to a login page when civet_settings.REQUIRE_LOGIN = True; otherwise
it will go directly to the home page. Attempting to access the home page when REQUIRE_LOGIN = True without
a login will redirect to the login page.

3.1 Creating a superuser

To keep things simple, CIVET handles the administration of users through the controls available to a “superuser”. To
create a superuser, at the djciv_site level of the directory, use the terminal command 1

python manage.py createsuperuser

In development mode, start the system with the usual command

python manage.py runserver

and enter the URL

http://127.0.0.1:8000/admin/

You should see a page similar to this: 2

The Add and Change buttons provide access to a rich set of options for adding users and editing information about
them. Clicking on “Users” will give a screen listing all of the users in the system, and clicking on a user name on
that screen goes to a page with information about the user. You can delete one or more users from these screens; the
“Groups” option allows users to be organized into groups.

3.2 Additional notes

1. Accessing the page without additional arguments automatically does a logout.

1 A description of the process can be found at https://docs.djangoproject.com/en/1.8/intro/tutorial02/
2 The options seen in the tutorial version of this screen which allow the editing of the databases have been deactivated since the database structure

is tightly linked to various functions of the program, particularly the reading and writing of the workspace files. These could, of course, be modified,
but this will need to be done in the program itself, not simply by adding fields.

9

https://docs.djangoproject.com/en/1.8/topics/auth/
https://docs.djangoproject.com/en/1.8/intro/tutorial02/

CIVET Documentation, Release beta-0.9.1

2. Django provides an extensive set of utilities for resetting passwords: for the sake of simplicity. as well as removing
a possible venue for mischief, these have not been activated: it should be relatively simple to do this if you would like
to have that capability.

At the present time, the AWS deployment does not show the pretty form, but all of the options are still
there and function: this will be corrected at some future date.

3. The GitHub version of the program is populated with at least the following:

Superuser: civet-super Password: je-kiffe-grenouilles 3

User: ima-coder Password: code-code-code!

For the sake of security, you will probably want to delete these after you create your own environment,
or at least change the passwords.

3 You were expecting “password”, “CHANGEME” or “12345678”??

10 Chapter 3. Authentication

CHAPTER

FOUR

HOME PAGE OPTIONS

The home page has the following links:

Read coding form: CIVET reads a coding form template without using a workspace: this is used if you want to use
the web coding form without annotated texts. This option can also be used when debugging coding forms.

Read workspace: CIVET reads a set of text collections and their associated coding form from a zipped file: this
mode allows for text annotation and extraction and is described in more detail in Section [sec:workspace],
[sec:annotate] and [sec:coding].

Manage workspace: This links to various utilities that operate on workspace files including downloading the coded
data as a tab-delimited file, editing the meta-data, and adding comments to the file. [Beta 0.9: only the data
download is implemented; editing the meta-data can be done in a text editor.]

Set preferences: This goes to a page where various program preferences can be set manually.

Documentation

On-line manual Links to an HTML version of the documentation

Download PDF This downloads a PDF file with the documentation.

Log out Log out the current user. You will only see this option if log-ins are required: see the chapter on “Authenti-
cation.”

4.1 File selection

The first three modes go to a file selection screen.

This provides the following options:

Choose file: Select a file containing a coding form template or workspace, then read this into the system by clicking
the Read file button.

Coder: Any text entered here—typically a coder name or ID—will be included as metadata with any annotations or
cases coded. This field is optional.

Demo file: Read the simple demonstration files built into the system. 1

Download demonstration file: This downloads a template or workspace demonstration file, which can be used as an
example.

1 These files are named CIVET.demo.template.txt and CIVET.extract.demo.zip in the directory
djcivet_site/djciv_data/static/djciv_data/ and can be modified there.

11

CIVET Documentation, Release beta-0.9.1

Fig. 4.1: CIVET file selection screen

12 Chapter 4. Home Page Options

CHAPTER

FIVE

CIVET CODING FORM TEMPLATES

A CIVET template file specifies the individual components of the form: these are the familiar components from web
forms but the syntax used to specify them is simpler than what you will find in HTML.

CIVET is simply adding these controls to an HTML <form> and, as with all things HTML, most of the placement of
the fields is handled by the browser. 1 CIVET provides some limited formatting through the insertion of text and line
breaks, and with some experimenting you should be able to keep the form from being too ugly.

The template file should be a simple text file—most systems are happier if this ends in the suffix .txt—similar to
that used in an R or Stata script (that is, not a formatted file such as that produced by MS-Word). Appendix 1 gives an
example of a template file, and the code for this can also be downloaded from a link in the program.

5.1 Simple Template-Based Data Entry Form

The basic data entry form just uses the presumably familiar standard HTML data entry fields and should be self-
explanatory.

To save a set of coded fields, click one of the buttons which follow the title Options after saving:

Code another case: Save, then return to the same form

Download data: Save, then download data as a tab-delimited text file

The Download CIVET data page provides a text box for a file name, and the Download file button down-
loads the coded data. Use the Start new data file link to re-start the coding and the Continue coding with this file link
to continue adding to the existing records.

• The .txt file is tab-delimited and contains the variable names in the first line.

• If the file name does not end in “.txt,” this suffix will be added.

5.2 Command formats

Commands generally have the following format

command: entry-title [var-name] options
comma-delimited list

1 Writing in HTML5 and CSS, one can actually exercise a very fine degree of control over the placement, but if you are comfortable with that
sort of code, you presumably aren’t using CIVET in the first place. That said, you can see the HTML generated by CIVET by using the View source
option in your browser, then save it as a file using Save Page As... and that could provide a starting point for creating prettier code.

13

CIVET Documentation, Release beta-0.9.1

Commands vary in how many of these components they have, but all follow this general pattern.

Each command ends with a blank line (or, if you prefer, the commands are separated by blank lines.)

Commands can also be cancelled by adding a “-” in front of the command: this will cancel the entire command, that
is, all of the lines associated with the command, not just the first line. 2 For visual symmetry, a “+” in front of the
command “activates” it, though the command will also be active without the plus.

“#” denotes a comment: anything following a “#” is ignored, so lines beginning with “#” are completely ignored.

5.2.1 Items in template specification

The commands involve one or more of the following items:

entry-title This is the title of data entry field. If this ends with / a line-break (
) is inserted after the text.
The titles are escaped: at present the characters <, >and the single and double quotes are replaced with the
equivalent HTML entities <, > " and ’. 3 The entry-title field cannot contain the
characters “[” or “]”—if these are present they will be interpreted as bounding the var-name field—but the
escaped versions “\[” and “\]” are allowed.

var-name The text of the variable name for this field; this will be used in the first line of the .csv output file

comma-delimited-option-list A list of the items that can be selected, separated by commas. A ‘*’ at the beginning
of the item means that it will be initially selected.

comma-delimited-var-name-list A list of items which appear in var-name fields, separated by commas.

page-text Any text

number An integer

2 This feature is actually a bit more subtle: cancellation is invoked when the first character in a line is “-” and there is a “:” in the line, which
will always occur with a command. This allows default texts such as “- - -” to be used, though a default text such as “- - -: we really want to confuse
CIVET” will cause an error.

3 In the current implementation, named HTML entities such as © and € can be included and should produce the correct character.
At present numbered entities such as [—the HTML equivalent of ’]’—do not work since the # is interpreted as a comment delimiter:
depending on whether there is demand for this feature, the system could provide a way around this.

14 Chapter 5. CIVET Coding Form Templates

CIVET Documentation, Release beta-0.9.1

5.2.2 Errors in template commands

There is a fair amount of error trapping as the commands are processed; any problems will reported on a web page.
Generally the system will stop after it has encountered the first error rather than reporting all of the errors in the file.

5.3 Specifying variables

5.3.1 Specifying variables to save

This command gives the variables that will be saved; these can be in any order but each of these must correspond to
a var-name somewhere in the form, or are one of the special variables discussed below. A tab-delimited version of
this list will be the first line of the output file. The command can occur anywhere in the file.

save:
comma-delimited-var-name-list

If the variable name has brackets following it, the value of the variable rather than the literal text will be written when
the data are written to a tab-delimited file: the value is the string in brackets [...] in the annotated coding mode. If
there is a variable name inside the brackets, that will be used as the column name for the values; otherwise the regular
name will be used: this allows both the literal text and the value to be saved, as in the third example below.

If save specifies a value output and not is found, the output depends on the preference
civet_settings.USE_TEXT_FOR_MISSING, which also can be set on the “Preferences” page. If this
is True, the text will be used; otherwise the string in civet_settings.MISSING_VALUE will be used.

Example:

save:
worldregion, eyewit, groupname, comments

save:
worldregion [regioncode], eyewit, groupname[], comments

save:
worldregion, eyewit, groupname, groupname [groupcode], comments

5.3.2 constant

Sets the value of a variable to a constant; this can be used in a save:

constant: page-text [varname]

Example:

constant: Data set 0.2 [data_id]

5.3.3 filename

Sets the default file name for the downloads: this can be changed before downloading.

filename: page-text

Example:

filename: our_wonderful_data.csv

5.3. Specifying variables 15

CIVET Documentation, Release beta-0.9.1

5.3.4 Special save variables

coder Coder text entered in the CIVET template selection page

date Current date. this is currently in the form YYYY-MM-DD. 4

time Current time in hh:mm:ss format

5.4 Commands only relevant in workspaces

5.4.1 discard

Sets an initially unchecked checkbox for the special variable “_discard_”, which can be used to indicate that a collec-
tion has been evaluated by a coder but nothing was coded. When this is checked, a case is generated for the collection
containing only the “_discard_” variable; those cases are not used to generate data.

discard: entry-title

Example:

discard: Texts are not codeable

5.4.2 comments

Creates a textarea box for the special variable _comments_ which will be added to the “casecmt” meta-data for the
case being coded. _comments_ can also be added to the output data like any other variable, but this is not required.
The default size of the text box is 4 x 64 characters; alternative sizes can be specified by adding an empty set of
brackets followed by rows and cols using the same format as the textarea command. 5

comments: entry-title
comments: entry-title [] rows = number cols = number

Example:

comments: Enter any additional comments about this case

5.4.3 header

Sets the HTML code for the display of collection information at the top of the editing and coding screens. The text of
field-name will be substituted for the optional token _text_ in HTML-text

header: HTML-text [field-name]

field name should be one of the following

workspace Workspace file name

collection Collection ID (collid field)

comments Collection comments (collcmt field)

The three fields are displayed in this order; they default to null strings. The individual header commands must be
separated by blank lines; otherwise, consistent with the command syntax, 6 the latter lines will be ignored.

4 This format can be changed in the function get_special_var(avar) in civet_form.py: It is specified using the extensive Python/C date
format operators shown here.

5 In fact, the comments: command is just a shorthand for textarea: entry-text [_comments_], and this will have the same
effect, with the contents added to the metadata.

6 Neither a bug nor a feature: just is what it is.

16 Chapter 5. CIVET Coding Form Templates

http://strftime.org/

CIVET Documentation, Release beta-0.9.1

Example:

header: <h3>Workspace _text_ </h3>' [workspace]

header: Collection: _text_ ' [collection]

5.4.4 Special save variables for workspaces

These variables will not include any texts that were deleted using shift-click on the lede. 7

collection collid field of the collection

publisher Comma-delimited list of the textpublisher fields of the texts in the collection

bibliorefs Comma-delimited list of the textbiblio fields of the texts in the collection

5.5 Data entry fields

Any of these commands can be prefixed with “//”, which inserts a <p></p> or a “/”, which inserts a
.

5.5.1 checkbox: Binary checkbox

A simple binary check-box. The value of the variable will be first item in the list when the box is not checked; the
second item when the box is checked. The * notation on the second item can be used to specify whether or not the box
is initially checked.

select: entry-title [var-name]
comma-delimited-option-list

Example:

checkbox: Eyewitness report? [eyewit]
no,*yes

5.5.2 select: Pull-down menu

Pull-down menus—which are called a “select” in HTML—are specified with the syntax

select: entry-title [var-name]
comma-delimited-option-list

Example:

select: Region [worldregion]
North America, South America, Europe, *Africa, Middle East, Asia``

7 At present, only these two fields are available, but it is relatively straightforward to add the others by just following the existing code that you
locate in a search for “textpublisher”

5.5. Data entry fields 17

CIVET Documentation, Release beta-0.9.1

5.5.3 dynselect: Select from dynamic pull-down menu [workspaces only]

Pull-down menus which are specified dynamically using the categories section in the collections are specified
with the syntax

dynselect: entry-title [var-name]
category-name

Example:

select: Region [worldregion]
statelist

If the category-name is not found in the collection, the control defaults to a single entry ---: this allows for situations
where there were no items found in the category.

5.5.4 radio: Radio buttons

A series of radio buttons are specified with the syntax

radio: entry-title [var-name]
comma-delimited-option-list

The entry / in the option list causes a line-break (
) to be inserted

Example:

radio: Region [worldregion]
North America, South America, Europe, *Africa, /,Middle East, Asia

5.5.5 textline: Enter single line of text

This creates a box for a single line of text (HTML ‘‘ type=text‘‘). The width = number is optional and specifies
the size of the text entry box in characters: the default is width = 32

textline: entry-title [var-name] width = number
initial-text

Example:

textline: Name of group [groupname]
<enter name>

5.5.6 textclass: Extract single line from annotated text

This creates a box for a single line of text (HTML ‘‘ type=text‘‘) that will interact with annotated text; in addition
information can be manually entered or cut-and-pasted into this box. If this command is used in a form that does not
have associated annotated text, it behaves the same as textline and the class information is ignored.

The class=class-name is required and specifies the name of the annotation class that the text-entry box is con-
nected with; a class can be associated with multiple text-entry boxes. There are four standard classes:

• nament: named-enties, which are determined by capitalization

18 Chapter 5. CIVET Coding Form Templates

CIVET Documentation, Release beta-0.9.1

• geogent: geographical locations, which are determined by a combination of prepositions and capitaliza-
tion 8

• num: numbers

• date: dates

The width = number is optional and specifies the size of the text entry box in characters: the default is width =
32

textclass: entry-title [var-name] class=class-name width=number
initial-text

Example:

textclass: Name of city [cityname] class=nament
<enter city>

5.5.7 textarea: Enter multiple lines of text

This corresponds to an HTML “TEXTAREA” object. The rows = number cols = number is optional and
specifies the size of the text entry box in characters: the default is rows = 4 cols = 80

textarea: entry-title [var-name] rows = number cols = number
initial-text

Example:

textarea: Description [descript] rows = 2 cols = 64
Briefly describe the incident

5.6 Linking fields

5.6.1 link : Linking select and textline fields

The link: command can be used to connect a select: or dynselect: menu to a set of textline: fields so that their content
is filled in from the menu if something is selected, but otherwise these fields can be filled in manually.

link: one-to-four-textline-vars [select-var-name]

The list of variables is space-delimited and all of the variables must have been defined before the link: command is
encountered, but otherwise the command can be anywhere in the file.

The rules for extracting the fields depends on the number of variables specified:

1. Insert the entire menu item, which can have any format, in the text field

2. The entire menu item has the form xxxxx [yyy] The xxxxx—which can contain anything except []—is
inserted in the first field; yyy is inserted in the second field. This is typically used for names and codes, e.g.
Algeria [DZA]

3. The entire menu item has the form xxxxx (zzzz) [yyy] The xxxxx—which can contain anything except
()—is inserted in the first field; zzzz is inserted in the third field, and yyy is inserted in the second field. This
a somewhat awkward generalization of the four-variable option. Example: Algiers (Algeria) [DZA]

8 This is only done in the automatic annotation if civet_settings.USE_GEOG_MARKUP = True: see the discussion in the Preferences
chapter.

5.6. Linking fields 19

CIVET Documentation, Release beta-0.9.1

4. The entire menu item has the form xxxxx (lat, lon) [yyy] The xxxxx—which can contain anything
except ()—is inserted in the first field; lat is inserted in the third field, lon in the fourth field, and yyy is in
the second field. This is typically used for names with geocoordinates and codes, e.g. Algiers (36.757,
3.063) [DZA], but lat and lon do not need to be numbers

At present, there is only minimal error checking to insure that the fields are delimited correctly: These are taken
from a set menu, not user input, so it is the responsibility of the form developer to make sure these aren’t ambiguous
(e.g. the menu option Florence (Firenze) (43.821641, 11.286954) [ITA] will generate the string
Firenze) (43.821641 as the lon field). Alternatively, you can add code in civet_coder.html to accom-
modate the more complex formats.

link: countryname countrycode [countrymenu]

link: cname ccode clat clong [geolocmenu]

5.6.2 textsource: Extract sources from annotated text

A textsource: field can be automatically linked to a textclass: field so that the information in the textid:
and/or textbiblio: field for the workspace text block where an annotated word or phrase has been extracted will
be automatically added. This linkage is done by using the variable name from a textclass field with _src added
to the end.

Except for the linkage, a textsource variable acts like a regular text variable: information can be typed or pasted
into the text box—typically this will be done from the Source information that is visible when the Show Comments
option is active—and the variable can be saved.

If the variable name does not correspond to a textclass variable with an added _src, textsource behaves the
same as textline. 9

The textid:/textbiblio: content is controlled by the preferences “Use textid in source citation:” and “Use
textbiblio in source citation:”; the default uses only textbiblio:.

The width = number is optional and specifies the size of the text entry box in characters: the default is width =
32

textsource: entry-title [var-name] width = number
initial-text

Example:

textsource: Source for city [cityname_src] width=40
<enter source>

5.7 Additional web page formatting

5.7.1 title: Set page title

Sets the title of the web page: that is, the HTML‘‘<title>...</title>‘‘ section of the header.

title: page-title

Example:

title: CIVET-based coding form

9 In a future version of CIVET we hope to have a facility where citation information can be transferred into a textsource field by clicking
on a lede but this has been implemented yet. Preferences chapter.

20 Chapter 5. CIVET Coding Form Templates

CIVET Documentation, Release beta-0.9.1

5.7.2 Insert text

Adds text to the form: the various options follow the usual HTML formats. In interests of simplicity, text is “escaped”
so that special characters are not interpreted as HTML: note that this means that in-line mark-up such as <i>,
and <tt> will not work, so if you need this activate and use the html: command. Also keep in mind that these
commands need to be separated by a blank line.

A “/” in the page-text will add a line-break
. To include a “/” in the text, use “//”.

h1: page-text
h2: page-text
h3: page-text
h4: page-text
p: page-text

Example:

h1: Primary data set coding form

p:Please enter data in the fields below,/ and be really, really careful!

The simple command

p:

is useful for putting some space between form elements; this is equivalent to the “//” prefix in the data entry commands.

5.7.3 newline: Insert a line break

Adds a new line in the form; this is equivalent to the “/” prefix in the data entry commands.

newline:

5.7.4 newpage: Insert a page break

Adds a new page to the form.

newpage:

5.8 Advanced formating options

A CIVET form is simply a web page, and consequently can be controlled by the standard commands for displaying
web pages, notably cascading style sheets (CSS).

5.8.1 Set css

Adds the text which follows the command to the <style>...</style> section in the page head. The text block
is terminated by a blank line.

css:
one or more lines of css definitions

5.8. Advanced formating options 21

CIVET Documentation, Release beta-0.9.1

5.8.2 Set form division sizes

This is a short-cut that for most options just changes the size of various components in either of these forms:

size: [division-name] width = <length> height = <length>
size: [division-name] width : <length>; height : <length>

<size> can be any of the CSS “length” formats: http://www.w3schools.com/cssref/css_units.asp.

division-name is one of the following:

body over-all size of the page

civ-editor size of CKEditor text box on the annotation page

civ-text-display size of the scrolling text display on the coding page

civ-form size of the coding form created by the template in both the basic form and the coding page

Notes:

1. The system does not check for the validity of either the division names or the CSS <length> specification; if
they can’t be interpreted they are ignored.

2. size commands can occur anywhere and can be combined with a css command: if they occur before the css
command the contents of css will override size, and vice-versa if they occur afterwards: the CSS string for
the <style>...</style> section is assembled in the order the commands occur.

3. Because CSS doesn’t use object-like inheritance, the size: [body] command resets all of the properties
of body, leaving only width and height set in the style, e.g.

body {
width:900px;
height:700px;

}

If you want to change the size but also retain other characteristics, use css to define the complete body style.

4. The civ-editor command changes the size in the configuration of CKEditor rather than any CSS, so this
name cannot be used in css: (well, it can be used but it won’t do anything...). CKEditor does not allow the
“%” option to be used as a “height”: see http://docs.ckeditor.com/#!/guide/dev_size. The CKEditor defaults to
the width of the page (more or less) and a height of 200px.

5. The civ-form and civ-text-display names correspond correspond to <div class=’name’> in the
content of the form; you can modify these directly by using a css:‘‘command. The ‘‘size command
resets the <name>-size class, which only controls the size.

5.8.3 Insert HTML

[This command may or may not be included in the operational version of the system, as it provides some opportunities
for mischief. Stay tuned. It is in the code but currently deactivated; if you are installing your own version of the
system, it can be activated by setting civet_settings.HTML_OK = True.]

Adds arbitrary HTML code without escaping.

html:
one or more lines of HTML

22 Chapter 5. CIVET Coding Form Templates

http://www.w3schools.com/cssref/css_units.asp
http://docs.ckeditor.com/#!/guide/dev_size

CHAPTER

SIX

CIVET WORKSPACES

CIVET is part of a projected collection of open-source programs designed to work with very large sets of small
text files: in the domain of contentious politics these are usually news articles but the issue of managing very large
databases of small texts extends well beyond this application. For example, projects analyzing texts from legislative
debates, legislation, campaign web sites and blogs all have much the same character when they are studied at a large
scale.

In the CIVET system, files containing sets of individual stories are called “collections”: these are typically multiple
related news stories—“texts”—from which one or more data records—“cases”—are coded. These are stored in a
YAML format 1 which is a structured human-readable text file containing a number of data fields; the details of this
are given in Appendix 2.

Sets of text collections are grouped into “workspaces” that also contain an associated coding form and, optionally,
other information such as user-specified categories that will be used in automatic annotation. The template file begins
with the string “form.” and uses the category and template commands described in the chapter CIVET Coding Form
Templates. Workspaces are compressed (.zip) directories (folders).

In the current configuration of the system, workspace files are uploaded to the system, annotated and/or coded, then
downloaded when a session is completed: no data remain on the machine where the CIVET system is running. In a
future version, we expect to have an option for persistent data that could be used on a secure server, as well as options
for reading these files from a server.

The workspace will generally not be downloaded to the same place it was originally: as a standard HTML security
feature, the system does not retain any information about where it obtained a file. Instead, it will be downloaded to
wherever your system downloads file: for example on the Macintosh this is a folder named Downloads. 2 If you
wish to replace the original workspace file, this will need to be done manually or with a script operating locally.

There is some limited error checking as the workspace is processed. If errors are found you will get a screen similar
to the figure below listing the errors, which must be corrected before the workspace can be used.

Like error messages in all programs, these are self-explanatory 3 though in general errors will occur either when you
are processing a workspace for the first time or if you have manually edited it outside of the CIVET system: once a
workspace has been successfully read by CIVET the program should not introduce any errors that would be caught at
this point. 4

The program is sensitive to file names:

• Any file ending with .yml is assumed to be a CIVET -formatted collections file

1 https://en.wikipedia.org/wiki/YAML
2 If you read the workspace from the same directory where it will eventually be downloaded, the behavior presumably depends on the operating

system: in the case of OS-X both the downloaded file and the decompressed versions get a suffix added. E.g. if the original workspace folder is
named “test123” with the compressed version “test123.zip”, the system assigns the downloaded version the name “test123 (1).zip” which decom-
pressed to a folder named “test123 (1)”. We are leaving the task of insuring that the original file is not over-written to the operating system and
whatever other utilities you might be using to manage workspaces.

3 Hahaha. . . just a little programmer joke. . .
4 For example, the error in the variable values string in the example screen occurs because of the substring ’whois’=’Case1-whois’,

which should actually be ’whois’:’Case1-whois’, but that ‘=’ could only have been introduced through external editing.

23

https://en.wikipedia.org/wiki/YAML

CIVET Documentation, Release beta-0.9.1

• There should be one and only file beginning with the string form.: this specifies the coding form for the
workspace

• Any file beginning with codes. is assumed to be a category vocabulary list. In the file name, “codes.” must
be followed by a category name then a period; the remainder of a “codes” file name can be anything, though
typically it will end in .txt.

• Any file ending with .ini is assumed to be a configuration file [Version 1.0: Not yet implemented—see
comments on setting globals in the “Preferences” chapter.]

Except for these restrictions, the directory can contain additional files of any kind: these will be preserved when the
file is downloaded. A workspace file cannot contain subdirectories.

Additional notes on workspaces:

• So long as the YAML formatting is preserved—which should be fairly straightforward—the system is indifferent
as to whether editing is done inside or outside of CIVET .

• If the form file is missing or contains errors, the system will display the errors it found, then return to the data
selection page.

• If you are manually editing the variable values in the cases section, any single quotes (’) must be “escaped”;
that is, replaced with \’. This will be done automatically when cases are generated from inside the program.

• The system currently translates UTF-8 encodings to ASCII 5 using the Django function
encoding.smart_str(). We expect to eventually convert the program to Python 3.x (at present it
is Python 2.7) which is utf-8 “native” but it isn’t there yet.

6.1 Workspace Management

The Manage workspace link on the home page will take you first to a workspace selection page, and
then to the page shown below. In Beta 0.9, only the Export data in tab-delimited format/Use
save-variable list in the template is implemented: this will download any coded cases found in the

5 UTF-8 is an expanded UniCode character set that includes accented letters, “smart quotes” and many many more characters not found in the
older ASCII (American Standard Code for Information Interchange) character set. UTF-8 is very widely used on the Web so if you have downloaded
texts, there’s a pretty good change they contain at least some UTF-8 characters.

24 Chapter 6. CIVET Workspaces

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/ASCII

CIVET Documentation, Release beta-0.9.1

workspace. The remaining functions will eventually be implemented but in the meantime these tasks can be done
using a text editing program.

6.2 User-specified annotation vocabulary using category

The category command is used to set up special categories of words that will be color-coded and can be associated
with text-extraction fields. The annotation can either be done automatically or by manually selecting the text and using
the Style pull-down menu in the annotation editor.

category: category-name [color]
comma-delimited-phrase/code-list or file-name

The category-name must be unique and cannot be one of the standard categories nament, num or date. The
program currently accommodates up to 99 categories. 6

color can be any of the 140 named HTML5 colors, 7 a six-digit hexadecimal RGB color (e.g. 6A5ACD corresponds
to the named color “SlateBlue”; the hex notation provides a presumably sufficient choice of 16,777,216 colors), or a

6 If you need more, this can be changed by allowing more digits in the {:02d} format in the
code UserCategories[newcat].append(’termst{:02d}’.format(len(UserCategories))) in
CIVET_template.make_category()

7 See http://www.w3schools.com/html/html colornames.asp

6.2. User-specified annotation vocabulary using category 25

http://www.w3schools.com/html/html

CIVET Documentation, Release beta-0.9.1

two-digit color from the CIVET palette. 8 The palette, shown below, can be accessed by entering the address

http://127.0.0.1:8000/djciv_data/make_color_list

while the program is running on a dedicated machine. If [color] is empty—that is, []—the system uses a color
from the standard list in the listed order.

6.3 Automatic annotation/skip editing mode only:

When the program is running with Always apply annotation: True and Skip editing: True, 9

categories can be further visually differentiated using one or more of the following font specifications

• bold: bold face

• italic: italic

• under: underline

So for example [Green bold italic] will display the category in an italic bold font colored green.
8 This palette was assembled in a very ad hoc manner, is not color-blind-friendly, and we would be delighted to substitute something better. The

list is set as CIV_template.CatColorList
9 This is the configuration typically used when just coding the texts with automated annotation. We plan to retrofit this to the editor as well but

adding it to the annotation was a simple hack, and adding it to the editor is a little more complicated.

26 Chapter 6. CIVET Workspaces

http://127.0.0.1:8000/djciv_data/make_color_list

CIVET Documentation, Release beta-0.9.1

6.4 Additional information on categories

1. Generally, matching of words and phrases is not case sensitive: in the example below, both “killed” and “Killed”
will match. However, if the word in the category list is all uppercase—e.g. NATO, IRA, ISIS—it will only match
all-uppercase strings: this should deal with most cases of acronyms, in particular US and IS. A word or phrase can
only be in a a single category: putting one in multiple categories will not cause an error, but only the first category
evaluated—generally this will occur in the order the categories were entered—will be marked. Words and phrases
within a category are evaluated in the order they are listed—see the example in the chapter on annotation— which can
be used to establish precedent when words or phrases overlap. At present the program does not allow partial matches,
though a facility for this may be added in the future. 10

2. The comma-delimited-phrase/code-list can have codes assigned to each of the phrases: these occur in brackets
following the phrase and are added to the text during automated markup. The codes can be any character string. Either
the phrase or the code or both can be specified in the output. If some of the phrases in the list have codes and others
do not, the blank codes will be assigned a null (or, optionally, missing) string.

3. The vocabulary list can also be read from a file in the workspace. The file name must begin with
codes.category-name.; the remainder of the file name can be anything. 11 This be a text file with one phrase
per line and the code in brackets; a line beginning with # is treated as a comment.

4. As with texts, UTF-8 encodings are translated to ASCII using the Django function
encoding.smart_str().

Example:

category:action [red italic]
killed [1], wounded [2], shot and killed [1], bombed [3], clashed [3]

category:people [Brown]
civilians, workers, authorities, troops, soldiers, rebels, people, group``

category:nationstate [Gold bold under]
codes.nationstate.txt

category:weapons [Olive]
codes.weapons.mnsa.weaponslist_150724.txt

10 If you want it now, delete the test if endx == idx+len(st): in CIVET_utilities.do_string_markup().
11 The period following the category-name is required!: the file name codes.weapons_mnsa_list.txt would not be recognized as a valid

codes. file. Or rather it would be interpreted as applying to a category weapons_mnsa_list, not the category weapons.

6.4. Additional information on categories 27

CIVET Documentation, Release beta-0.9.1

28 Chapter 6. CIVET Workspaces

CHAPTER

SEVEN

ANNOTATION AND EDITING COLLECTIONS

The annotation and editing page for workspace collections 1 implements a minimal version 2 of the open source
Javascript “CKEditor” http://ckeditor.com/ which allows the texts to be edited and annotated. Editing works as you
would expect, including cut/copy/paste options.

Annotation is handled with the Styles drop-down menu in the window toolbar which should show both the standard
CIVET categories—named-entity, number and date— and any user-specified categories. To annotate, just select the
text you want to annotate and then select the annotation to apply.

The following options are available on this screen

Annotate the collection:

This applies the automated markup system which currently annotates the following categories of words
and phrases:

Named-entities: This is based on capitalization; consecutive capitalized words are combined.

1 If you are not seeing this screen, civet_settings.SKIP_EDITING is probably set to True: this can be changed on the “Preferences”
screen.

2 that is, the version of ckeditor deliberately uses only a very small set of the features that are available for the editor: if you want to customize
this, additional features can easily be added.

29

http://ckeditor.com/

CIVET Documentation, Release beta-0.9.1

Location [optional] When the Use preposition-based geographical markup preference
is set to True, these are named-entities which are preceded somewhere in the text by prepositions
in the list ’at’,’to’,’in’,’from’ See additional discussion in the “Preferences” chapter.

Numbers: Digits and numerical words and phrases such as “one” and “two-hundred.”

User-specified categories: See the discussion of categories

Annotation is done automatically when Always apply annotation preference is set to True; this
can be changed on the “Preferences” screen.

Save edits and select new collection:

This saves whatever annotation has been done to the internal database 3 and returns to the collection
selection screen : this option would be used if you are only annotating text rather than coding them.
Annotations are saved in the textmkup field of the YAML file along with the date of the annotating and
the coder ID.

Save edits and code the collection:

This saves whatever annotation has been done to the internal database and goes to the coding and text
extraction page

Discard edits and select new collection:

This discards the edits and returns to the collection selection screen.

Download workspace and return to home screen:

This downloads the current workspace without doing any coding.

3 That is, the data is saved on the machine where CIVET is running; it is not saved on your local machine until the workspace is downloaded.

30 Chapter 7. Annotation and Editing Collections

CIVET Documentation, Release beta-0.9.1

7.1 Comments on annotation and editing

1. Associated codes in brackets following a term can be edited: when writing variable values, the system will
simply be looking for a value in a bracket that occurs at the end of a string.

2. A word or phrase can be annotated only once. 4 The user-specified category words are annotated before the
general named-entity, so if a named entity occurs in a category, that will take precedence. Similarly, any
numbers that occur in a category phrase will be part of the phrase, not separately marked as numbers.

3. Words and phrases in category lists are evaluated in the order they are listed, which can be used to establish
precedence.

Consider the sentence

Fig. 7.1: The category listing:

category:action [red]
shot and killed [4], killed [1], wounded [2], bombed [3]

would result in the annotation

Fig. 7.2: whereas category listing:

category:action [red]
killed [1], shot and killed [4], wounded [2], bombed [3]]

would result in the annotation

Fig. 7.3: because the “killed” part of the phrase “shot and killed” has already been annotated, and the remainder does
not fit any of the patterns.

4. CIVET does not identify a capitalized word as a named-entity if it occurs as a single word and is in the list of
common “stop words” in the file

djcivet_site/djciv_data/static/djciv_data/CIVET.stopwords.txt

In other words, “The” will be included as part of a named-entity in the phrase “The New York Times” but not
in the phrase “The village was. . . ”

5. Words referring to numbers such as “one”, “ten” and “fifty” have the corresponding numerical value added in
brackets following the number; these phrase and their associated values are obtained from the file

djcivet_site/djciv_data/static/djciv_data/CIVET.numberwords.txt 5

4 It would be possible to modify the system to allow for phrases to be in multiple categories, but at present this seems like a low priority; such a
feature may or may not be included in future versions.

5 Looking for a little programming exercise?: This needs more development in at least three ways. First, generate all of the standard English
equivalents, e.g. “eighty-five”, since these follow a simple set of rules. Second, and perhaps more important, allow the user to specify the values for
common approximations such as “several,”, “many” and “dozens.” The second can be done by just editing the file CIVET.numberwords.txt,
though generally we don’t want the user to have to figure out how to do that. Finally, there should probably be some error checking to make sure
the value in brackets is actually a number: CIVET will just copy the value in brackets without trying to convert it, but non-numbers will presumably
create issues further down the processing pipeline.

7.1. Comments on annotation and editing 31

CIVET Documentation, Release beta-0.9.1

This file only contains the most commonly-encountered phrases; bracketed values can be added manually as
well.

5. At present, CIVET does not recognize leading punctuation—typically quotes—and will not automatically mark
named entities or numbers beginning with this: this is on the list of changes for the future. It does handle most
trailing punctuation. In named entities, the lower-case prefixes “al-”, “bin-” and “ibn-” are recognized as part of
a name. 6

6 This list can be extended in the regular expression pat1 in civet_utilities.do_NE_markup().

32 Chapter 7. Annotation and Editing Collections

CHAPTER

EIGHT

CODING AND TEXT EXTRACTION

The CIVET coding form screen in the demonstration version is shown below. 1

The general operation of the coder/extractor is described below:

1. Unless civet_settings.SHOW_ALL_CONTENT = True, only the content of the first text will be ex-
panded; to expand or collapse these, click on the lede (green text). 2 The date of the article follows the lede in
brackets.

Shift-click on the lede will delete the text: the lede and text disappear and from any subsequent codings. The
text actually remains in the workspace file until it is permanently removed (or the deletion is reversed) in the
workspace management. See the notes below for more details on this operation.

2. There are three controls at the top of the text display:

1 The form displayed is specified in the file
djcivet_site/djciv_data/static/djciv_data/CIVET.demo.coder.template.txt
and can be modified if you want to experiment.
2 If you are switching back to the text from a text-extraction box, you will need to double-click: the first click switches the focus to the text; the

second toggles the content

33

CIVET Documentation, Release beta-0.9.1

• Show/hide comments: toggles the display of the comments and sources for each text: these are
initially hidden. 3

• Show all content: shows the content for all of the ledes

• Hide all content: hides the content for all of the ledes

3. Clicking a text entry boxes associated with an annotation category will highlight the relevant words in text: In
the demonstration version these are

Location: named-entities

Maximal injuries: actions

Who was involved: people

The ‘tab’ key cycles between the coding fields, or an option can be selected using the mouse.

4. When an annotated category field is active, all of the words and phrases in the text for that category are changed
to red, with the first word that is in an expanded text highlighted using a green background. The arrow keys can
be used to move the highlighted text into the field. These operate as follows:

Right arrow: Highlight the next text in the category

Left arrow: Highlight the previous text in the category

Down arrow: Replace the contents of the field with the highlighted text.

Up arrow: Append the contents of the field with the highlighted text. The appended texts are comma-delimited.

If the highlighted text is off the screen, the window will automatically scroll to place the text on the bottom of
the screen. If the text contains no words in the category, a pop-up window will alert you to this.

If an annotated category field has an associated source field, that information will be automatically replaced or
added when the down or up arrow is used. If a reference is already in the source field and information is being
added from the same source, this will not be repeated. References can also be added to source fields using
copy-and-paste.

Note: If there are a number of phrases in the target category—this occurs frequently for the named-entity and
geographical-entity categories—and the phrase you want to extract is not in the first expanded block, click on
the ledes to collapse them until you get to a text that does contain the target phrase. If the earlier ledes collapsed,
the first phrase highlighted will be in the expanded lede, so you will not need to hit the right-arrow key many
times to highlight and extract it.

5. Copy-and-paste from the text to the data fields work as you would expect; text can also be entered and edited
manually.

6. If bracketed values are included in the string, the system takes the value from within a set of brackets that is the
final item 4 in the phrase: earlier sets are assumed to be part of the text. For example, the value of the phrase
Islamic State [ISIS][mnsa] will be “mnsa”; the value of the phrase Islamic State [ISIS]
militia will be “Islamic State [ISIS] militia”.

7. To save a set of coded fields, click one of the buttons along the bottom. At present, all three buttons save; later
versions add “cancel“ and “reset” options. The options are:

Continue coding this collection: Save the data internally, then return to the same text to code additional cases.

Code next collection: Save the data internally, then select the next collection in the workspace and go to the
annotation screen.

3 If the textcmt field for the text block was empty, the display will show Comment: ----. If the textbiblio field for the text block
was empty, no Source: line will be shown.

4 Specifically, the system checks whether the final character in the string that is not whitespace is ‘]’. The output when the system is expecting
to find a bracketed value and does not is controlled by the preference civet_settings.USE_TEXT_FOR_MISSING which can be changed
on the “Preferences” screen.

34 Chapter 8. Coding and Text Extraction

CIVET Documentation, Release beta-0.9.1

Select new collection: Save the data internally, then select a new collection

Download workspace and return to home screen: This downloads the workspace with the coded cases to the
local machine. The Manage workspace facility can then be used to download any coded cases.

8.1 Note on deleting texts

Deleting a text changes the value of the textdelete field to True: the text remains in the workspace file but will
not be displayed again. Deletion also generates a case with the standard casedate and casecoder fields and the
following fields in the casevalues dictionary

delete : True
textid : textid for the deleted text

This can be used to track the deletion of specific texts. version Beta-0.9 does not have any internal utilities for using
this information but those functions may be added in a later version.

Deletion is tracked through the hidden text field deletelist in civet_coder.html.

8.1. Note on deleting texts 35

CIVET Documentation, Release beta-0.9.1

36 Chapter 8. Coding and Text Extraction

CHAPTER

NINE

PREFERENCES

This page has standard HTML check-boxes for setting the status of some of the variables affecting the work flow and
initial presentation of the texts.

Note: The “Default” values are those in the “off-the-shelf” version of the program: if you are using a version that has
been customized for your specific project, these may have been changed. And if so, further changing them may have
unpredictable consequences for the proper functioning of the program.

Always apply annotation Always apply automatic annotation to texts that have not been previously annotated.

• Default: True

• “civet_settings.py” variable: ALWAYS_ANNOTATE

Never apply annotation Never apply automatic annotation to texts: this is used when the annotation has already been
done in the YAML file. When True, the “Code next collection” button in the coding screen will read the next
collection then display the text with the form without any additional markup.

• Default: False

• “civet_settings.py” variable: NEVER_ANNOTATE

Show all content in coder In the coder, initially expand the content of all of the ledes.

• Default: Only expand the first lede.

• “civet_settings.py” variable: SHOW_ALL_CONTENT

Skip editing When reading a collection, skip the editing screen and go directly to the coder: this is typically used
when dealing with texts that have already been annotated or where the form does not have any fields that use
annotation.

When combined with Always apply annotation: True, the “Code next collection” button in the
coding screen will read the next collection, apply the automatic annotation, and display the annotated text with
the form. In this mode, the automatic annotation is not saved.

• Default: False

• “civet_settings.py” variable: SKIP_EDITING

Use text if value is missing: This controls the output when save specifies a value output and a bracketed value is
not the final element of the text string. If True, the text will be used; otherwise the MISSING_VALUE string
will be used.

When combined with Always apply annotation: True, the “Code next collection” button in the
coding screen will read the next collection, apply the automatic annotation, and display the annotated text with
the form. In this mode, the automatic annotation is not saved.

• Default: True

• “civet_settings.py” variable: USE_TEXT_FOR_MISSING

37

CIVET Documentation, Release beta-0.9.1

Use preposition-based geographical markup: Use prepositions to attempt to identify named entities that
are geographical locations: capitalized phrases that are preceded by the prepositions in the list
’at’,’to’,’in’,’from’ are assigned the category “Location”. If a phrase is identified anywhere in
the text as a possible locations, all instances will be labelled with that category; that label will take precedence
over the standard “Named entity” category.

• Default: False

• “civet_settings.py” variable: USE_GEOG_MARKUP

• “civet_settings.py” preposition list: GEOG_PREPOSITIONS

Use textid in source citation:

Use textbiblio in source citation: These control the content of the Source: that is saved in a textsource com-
mand and displayed in the Comments: textid and textbiblio refer to the fields in the texts in a
workspace file. When both are true, the source has the form “textid:textbiblio” where the content of the field is
substituted for the name, unless textbiblio is empty, in which case it has the form “textid”. If only one is
true, only the contents of that field are included; if both are false, the source is empty and not shown.

• Default: textid: False

textbiblio: True

• “civet_settings.py” variables: USE_TEXTID_IN_SOURCE, USE_TEXTBIBLIO_IN_SOURCE

Missing value Sets the missing value.

• Default: *

• “civet_settings.py” variable: MISSING_VALUE

9.1 Programming note

We eventually expect to implement an option for setting initial preferences through a configuration file in the
workspace, but in the meantime the default values of various global variables are set in the file civet_settings.py
and should be reasonably well documented there; in most cases these take the values True or False; those values
are case-sensitive.

The preferences page is implemented through those global variables, a very minimal Django form class PrefsForm
in forms.py, and the set_preferences() and get_preferences() functions in civet_settings.py. If you
wish to make additional global variables modifiable from this screen, you will probably be able to customize it just by
following the examples in the existing code.

38 Chapter 9. Preferences

CHAPTER

TEN

PROJECTED FEATURES

CIVET is part of a projected system designed for managing tens-of-thousands, or even millions, of small text files.
The transition in the past three decades from paper-based to electronic sources has dramatically increased the amount
of information that can potentially be coded, but results in a “drinking from a fire hose” problem where a huge number
of false positives must be managed because typically only a very small percentage of the texts obtained for a project
actually contain unique codeable events: yields of 1% to 3% are not uncommon. There is very little existing software
designed to deal with this situation, since the texts are too large to be treated as nominal variables in a statistical
package and too numerous to be treated as documents in a word processor. Consequently large projects typically write
customized systems in a language such as perl or Python, but these require programming skills which are not always
easily available in the social science community.

We are planning to extend the CIVET workspace format to become the basis of an integrated series of well-documented
and user-friendly utilities for dealing with this situation. All of the software will be open-source under the MIT license,
and made available to the community on GitHub. These utilities will provide at least the following capabilities:

• Near-duplicate detection which will collect articles which appear to be dealing with the same incident

• Extraction programs for converting common formats such as Lexis-Nexis, Factiva and GigaWord to the CIVET
document format.

• Filtering and classification of texts based on one or more of the following methods

Pattern-based: These will include regular expressions and boolean phrases with proximity measures

Semi-supervised learning: The system will construct one or more machine-learning models (for example sup-
port vector machines) to determine whether an article is relevant based on a set of positive and negative
examples provided by the user

Action-based: These will use either the open source TABARI or PETRARCH political event coders to deter-
mine the type of activity being described

Actor-based: These will use a set of standard lists maintained on a common server of political actors such as
nation-states, international organizations and militarized non-state actors

Geographical: These will use systems such as the open-source Mordecai location resolution system developed
by Caerus Analytics.

• Workflow management software for allocating and tracking the coding of incidents in large coding teams; these
will use web-based tools so that coders can work from any location and across institutions. We will also provide
scripts for interfacing to mySQL installations, GitHub and Dataverse as remote servers.

• Extension of CIVET to allow the various classification tools (actions, actors, and location) to automatically be
used in coding forms.

• Semi-automatic conversion of the resulting coded data to the Dataverse format, and more generally integrate the
CIVET tools with the Dataverse metadata, APIs and other tools as well as providing an access and authorization
protocol modeled on the categories used in Dataverse.

39

CIVET Documentation, Release beta-0.9.1

• Development of training materials, both text and video, for the system

40 Chapter 10. Projected Features

CHAPTER

ELEVEN

APPENDIX 1: SAMPLE TEMPLATE FILE

CIVET template demonstration file

title: CIVET basic form demonstration

h1:Ministry of Magic Hogwarts Incident Report

radio: House where incident occurred: [house]
Gryffindor, Hufflepuff, Ravenclaw, *Slytherin

//select:Nature of incident [natincid]

*Minor mischief, Unauthorized absence, Accident, Major infraction, Unforgivable Curses, Other

p:If "Other", provide details in the report section

//checkbox: Was incident reported to school authorities? [authreport]
No,*Yes

checkbox: Did incident involve muggles? [muggles]
No,Yes

//textline: Name of student(s) [names] width=80
Enter names here

//textarea:Brief description of incident [descrp] cols = 80
Enter brief description here

//textline:Reporting official [reporter] width=40
Enter your name here

h3:Thank you for your assistance; we will contact you by owl should we require any additional information

save:
date, house, natincid, authreport, muggles, names, descrp, reporter

This produces the form

41

CIVET Documentation, Release beta-0.9.1

42 Chapter 11. Appendix 1: Sample Template File

CHAPTER

TWELVE

APPENDIX 2: INPUT FORMAT

Fields marked with ** are required. Text fields are limited to 100 characters except for:

• textoriginal, textmkup and casevalues have no length limitation

• the three comment fields collcmt, textcmt and casecmt can be up to 500 characters

• coder ID, which is limited to 32 characters.

12.1 Collection fields

collid Collection ID, which needs to be unique within the workspace. If this is not provided in the file, collfilename
is assigned by the program

collfilename directory and name of the YAML file (without the suffix) where the file was read from; this is assigned
by the program

colldate collection date YYYY-MM-DD

**colledit datetime of editing of this collection [provided by system]

collcmt collection comments

categories [optional] categories and items for dynamic selection menus (dynselect)

texts one or more related texts

cases zero or more coded records

12.2 Category fields

These are all indented: the first line is the category name followed by a required colon (:). This is followed by
the menu options, one per line preceded by an indent and a hyphen-space (- ‘‘). If the menu option
begins with an asterisk (*‘‘) it is the default value for the menu. The following figure shows an example
of menu items specified for three categories, statecat,‘‘torgcat‘‘ and loccat.

12.3 Text fields

**textid unique text ID for CIVET. This needs to be unique within the workspace, and given how collections might
get mixed across workspace folders, ideally should be unique for the entire project. If a value for the text field
is not provided it will be assigned by the program.

43

CIVET Documentation, Release beta-0.9.1

**textdate text date YYYY-MM-DD

textdelete: Boolean: text has been marked for deletion.

textpublisher publisher [any string]

textpubid publisher ID [any string]

textbiblio bibliographic citation

textgeogloc geographical locations

textauthorr author [any string]

textlang language

textlicense copyright notification or other license information

**textlede lede/headline/abstract—this is a short summary of the article which will be highlighted and also will
appear in the sorting routine.

textcmt comment

**textoriginal original text of the story; this will not be modified by the system

textmkup marked up text: this is the annotated version of the story with any mark-up that has been added either
automatically on manually

textmkupdate datetime time of editing of this block [provided by system]

textmkupcoder coder ID

12.4 Case fields

** caseid Internal case/event ID. This is assigned by the program and probably should not be changed; external IDs
can be entered as variables.

44 Chapter 12. Appendix 2: Input Format

CIVET Documentation, Release beta-0.9.1

** casedate Date and time this case was coded [provided by system]

casecmt comment for case

casecoder coder ID

casevalues This is a string formatted as a Python dictionary which contains pairs of variable names and values

12.5 Date formats

[This has not been consistently implemented in Beta-0.9]

Dates are ISO-8601 (http://en.wikipedia.org/wiki/ISO_8601; http://www.w3.org/TR/NOTE-datetime;
https://xkcd.com/1179/; http://www.cl.cam.ac.uk/mgk25/iso-time.html) so generally either

• YYYY-MM-DD

• YYYY-MM-DDThh:mm:ss

• YYYY-MM-DDThh:mm:ss[+-]hh:mm

12.6 UTF-8 Encodings

The system currently translates UTF-8 encodings to ASCII using the Django function encoding.smart_str().
We expect to eventually convert CIVET to Python 3.x (at present it is Python 2.7) which is UTF-8 “native” but it isn’t
there yet, so you are best off doing your own conversions during the process of converting the original texts to the
YAML formatting.

12.7 Sample File

The following figure shows an example of a simple YAML file; This is a screen capture of a file being edited with
BBEdit, hence the color mark-up. A workspace demonstration file with several collections can also be downloaded in
the program.

12.5. Date formats 45

http://en.wikipedia.org/wiki/ISO_8601
http://www.w3.org/TR/NOTE-datetime
https://xkcd.com/1179/
http://www.cl.cam.ac.uk/mgk25/iso-time.html
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/ASCII

CIVET Documentation, Release beta-0.9.1

46 Chapter 12. Appendix 2: Input Format

CHAPTER

THIRTEEN

APPENDIX 3: SUPPORTING FILES AND SOURCE CODE SETTINGS

13.1 Files in /static/djciv_data

13.1.1 Files that can be modified using a text editor

CIVET.demo.template.txt: Demonstration template file for simple coding

CIVET.workspace.demo.zip: Demonstration workspace with sample collections, coding form and user-specified
coding categories

CIVET.stopwords.txt: Stop words for automatic named-entity annotation

CIVET.numberwords.txt: Number words and phrases for automatic number annotation

13.1.2 Modify at your own risk

ckeditor: This is a “CKEditor” file downloaded from http://ckeditor.com/: if you would like additional features you
should be able to create your own and swap it in here.

13.1.3 CIVET Logo

civet_logo.png: Don’t like our little guy, or want to put your own mascot here?—this is the place to make the change

13.2 Additional settings that can be changed in civet_settings.py

These are global options but do not appear in the “Preferences” menu since there is little reason to change them
dynamically (and usually plenty of reasons not to)

Hide ‘Read coding form’ Hide the ‘Read coding form’ button on the home screen: this can be used if you only
intend coders to be using workspaces.

• Default: False

• civet_settings.py variable: HIDE_READ_CODING_FORM

Hide ‘Read workspace’ Hide the ‘Read workspace’ button on the home screen: this can be used if you only intend
coders to be using coding forms.

• Default: False

• civet_settings.py variable: HIDE_READ_WORKSPACE

47

http://ckeditor.com/

CIVET Documentation, Release beta-0.9.1

Hide ‘Preferences’ Hide the ‘Preferences’ button on the home screen: this can be used if you don’t want coders
changing these.

• Default: False

• civet_settings.py variable: HIDE_PREFERENCES

13.3 Documentation

CIVET’s documentation is maintained using the Sphinx http://sphinx-doc.org/ system. The files are found in the docs
directory at the outer-most level of the system. The commands:

make html
make latexpdf

are used to generate the on-line and PDF documentation; the files are found in the _build/html and
_build/latex directories.

Because of the images and the redundant files in the “_build” directory, “djcivet_site/docs” is a very large
directory, about 70% of the size of the full “djcivet_site” directory, and can be removed in deployments
where you are just planning to use the on-line documentation. In that situation, the roughly 1 Mb file “dj-
civet_site/djciv_data/static/djciv_data/civdocs.pdf” can also be removed, to the code for the system itself is only about
2 Mb.

48 Chapter 13. Appendix 3: Supporting Files and Source Code Settings

http://sphinx-doc.org/

CHAPTER

FOURTEEN

APPENDIX 4: INSTALLING IN AWS-EB AND DOCKER

“Cloud” servers are an increasingly popular low-cost alternative to locally-administered servers. A large number of
these options are available 1 and as time goes by we hope to have instructions for multiple platforms and, of course,
would greatly appreciate any community contributions along these lines.

Update August-2016: These instructions worked in August, 2015: there’s a pretty good chance one or more require
some changes, or can be done a lot more easily, now.

14.1 Amazon Web Services Elastic Beanstalk

Amazon Web Services “Elastic Beanstalk” (AWS-EB) was the first cloud service where we successfully deployed
CIVET: At the time of this writing AWS provides a generous free trial option, and their instructions worked the first
time I tried. 2

A coherent set of instructions can be found at http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-
python-django.html. Then follow these steps:

1. Get an AWS account: https://aws.amazon.com/

2. In the instructions, skip the steps prior to the heading Configure your Django application for AWS Elastic
Beanstalk unless you also want to try out the system locally (which is probably a good idea)

3. Download the CIVET system from GitHub: https://github.com/civet-software/CIVET-Django 3

4. In the file djcivet_site/djciv_data/civet_settings.py set PRODUCTION_MODE = True 4

5. Create a directory that you will use to deploy the system: for consistency with the remaining instructions it should
be called AWS-CIVET though once you are comfortable with these instructions it could be named something different.

6. In that directory, copy the directory djcivet_site. Following the instructions, create directories named .elas-
ticbeanstalk and .ebextensions 5 and create a file named requirements.txt Just copy the contents from the section
below; you don’t need the pip freeze step. Copy the code in the AWS-EB Configuration Files section below
into the various files

Your directory will now look like

1 In particular, Heroku (https://www.heroku.com/) appears to be another Django-friendly option, and also offers free accounts. Using Heroku
requires a [free] GitHub account. With the recent revelations about the sheer brutality of Amazon’s corporate culture, I’ve got some ethical issues
with recommending this vendor, but for the moment it is the one widely-available cloud option where I know I can get CIVET to work.

2 Which, ahem, cannot be said for my multiple attempts to get the system running on the comparable Google service, though I’m sure it is
possible to do this and would be happy to add instructions once someone has figured it out.

3 At some point I’ll put a “turn-key” directory on GitHub that will have all of the appropriate files. But not yet.
4 You can also leave PRODUCTION_MODE = False and set STATIC_SOURCE = "http://civet.parusanalytics.com/civet_static/":

key here is that AWS needs to read static files from a remote server.
5 The ‘.’ in front of the file name means these will probably be invisible in most standard views of the AWS-CIVET directory: this is a Unix

feature, not a bug.

49

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-django.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-django.html
https://aws.amazon.com/
https://github.com/civet-software/CIVET-Django
https://www.heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-django
http://www.nytimes.com/2015/08/16/technology/inside-amazon-wrestling-big-ideas-in-a-bruising-workplace.html

CIVET Documentation, Release beta-0.9.1

AWS-CIVET
|-- .ebextensions
| `-- 01-django_eb.config
|-- .elasticbeanstalk
| `-- config.yml
|-- djcivet_site
| |-- db.sqlite3
| |-- djcivet_data
| |-- docs
| |-- djcivet_site
| | |-- __init__.py
| | |-- settings.py
| | |-- urls.py
| | |-- wsgi.py
| `-- manage.py
`-- requirements.txt

7. Install the “eb” command-line tool per the instructions found at
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html. Initializing this will require AWS access
credentials, a process described at http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html.

8. Follow the instructions in the Deploy your site using AWS Elastic Beanstalk section to use “eb” in a terminal
application. It will take a minute or so for the eb create process to complete—there’s plenty of feedback—and
there is an additional lag before the URL will be recognized.

9. You should now see the CIVET home page at the URL http://aws-civet-dev.elasticbeanstalk.com. This should take
you to the login page unless you’ve set REQUIRE_LOGIN = False. Run through the options with the demonstra-
tion files to make sure the site is working. If the site doesn’t come up at your first attempt, try reloading a couple of
times until AWS recognizes the URL.

10. When you are finished, enter eb terminate and respond to the confirmation prompt with “AWS-CIVET-dev”
in order to stop the program.

14.1.1 AWS-EB Configuration Files

In

Django==1.8.3

In AWS-CIVET/.elasticbeanstalk/ create the file config.yml

branch-defaults:
default:
environment: AWS-CIVET-dev

global:
application_name: AWS_CIVET
default_ec2_keyname: aws-civet
default_platform: Python 2.7
default_region: us-east-1
profile: eb-cli
sc: null

In AWS_CIVET/.ebextensions/ create the file 01-djcivet_site.config

container_commands:
01_collectstatic:

command: "source /opt/python/run/venv/bin/activate && python djcivet_site/manage.py collectstatic --noinput"

50 Chapter 14. Appendix 4: Installing in AWS-EB and Docker

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://aws-civet-dev.elasticbeanstalk.com

CIVET Documentation, Release beta-0.9.1

option_settings:
"aws:elasticbeanstalk:application:environment":
DJANGO_SETTINGS_MODULE: "djcivet_site.settings"
PYTHONPATH: "/opt/python/current/app/djcivet_site:$PYTHONPATH"

"aws:elasticbeanstalk:container:python":
WSGIPath: "djcivet_site/djcivet_site/wsgi.py"

In djcivet_site/djcivet_site/settings.py

• Set DEBUG = False

• Change SECRET_KEY since the downloaded version isn’t exactly secret

14.1.2 Handling of static files

As even a brief perusal of the web will affirm, the handling of static files in production versions of Django is,
well, complicated. After joining legions of programmers past, present and future in beating my head against the
wall on trying to get CIVET to access files internally in production as it does in the development mode, I gave
up 6 and put the static resources referenced from inside templates on a directory on an external server, specifically
http://civet.parusanalytics.com/civet_static/ Files that are read in views.py remain in the static/djciv_data folder, which
works in both the development and production modes.

If you would like to modify the static files in the system—the main target would be CKEditor, unless you find our
mascot too insufferably cute—you can move this material (the contents of the directory static/djciv_data in the distri-
bution) to the server of your choice: just change the address in settings.STATIC_SOURCE to point to the new
location. 7

14.2 Docker

Docker (https://www.docker.com/) is a highly popular, rapidly evolving 8 “containerization” system which will ulti-
mately simplify the secure deployment of software in a wide variety of different systems. Briefly, “containers” are
a more efficient extension of the concept of virtual machines —computers running programs which simulate the op-
eration of other computers—by packaging all of the required software in an “image” file that is able to run on any
system capable of running Docker. Because the operations within a container can be isolated from the host machine,
and the contents of the container can be inspected and verified, this should provide a more secure (and efficient) envi-
ronment than situations where a variety of software needs to be installed in order for a system to run, and that software
potentially has access to all of the resources of the system. 10 Hence the excitement.

To date, I have successfully gotten the Docker container described below to run CIVET in development mode as a
container on my Macintosh; I attempted to get it running on the Google Cloud but was unsuccessful; I have not tried
any other configurations. As always, I will be happy to incorporate any additional suggestions into this documentation.

The guide I used for the deployment is http://michal.karzynski.pl/blog/2015/04/19/packaging-django-applications-as-
docker-container-images/. This was not the first one I tried, and as indicated above, Docker is still evolving so you
should make certain you are using a recent set of guides (and the instructions here may break sooner rather than later.)

Using Karzynski as a guide, here are the steps:

6 Or simply took the approach that the Django system clearly prefers, depending on your perspective
7 An apparently popular approach for handling this is to use an AWS S3 server instance for external storage of static files: there are multiple

descriptions on the Web describing how to do this. As it involves quite a few steps and I’ve got a perfectly good server already set up in the cloud, I
went with that route instead.

8 Which is to say, a whole lot of moving parts which don’t quite always play well together and inconsistently documented: see
http://blog.circleci.com/its-the-future/, http://blog.circleci.com/it-really-is-the-future/, and https://valdhaus.co/writings/docker-misconceptions/ 9

10 Or as the situation was recently explicated at our local software development meet-up, in reference to a certain institution that does not have
a campus but “Grounds”, and I am not referring to Starbucks, “So which is it with your sysadmins? They want to make sure Docker is deployed
securely? Well, there are plenty of ways to do that. Or they just don’t want to do any work? Then you’ve got a different set of problems.”

14.2. Docker 51

https://www.docker.com/
https://en.wikipedia.org/wiki/Virtual_machine
http://michal.karzynski.pl/blog/2015/04/19/packaging-django-applications-as-docker-container-images/
http://michal.karzynski.pl/blog/2015/04/19/packaging-django-applications-as-docker-container-images/
http://blog.circleci.com/its-the-future/
http://blog.circleci.com/it-really-is-the-future/
https://valdhaus.co/writings/docker-misconceptions/

CIVET Documentation, Release beta-0.9.1

1. If you aren’t already using Docker, get a Docker account—there is a free option—and install Docker: the instruc-
tions for this will vary depending on your operating system; Karzynski’s instructions are just for Linux.

2. Set-up a directory to hold the Docker project—I called this Docker-CIVET, which corresponds to Karzynski’s local
directory dockyard. I’ll be using Karzynski’s Docker image name DOCKYARD.

3. Copy the directory djcivet_site into Docker-CIVET.

4. In Docker-CIVET, create the docker-entrypoint.sh and Dockerfile files from the code given below. Your directory
will now look like

Docker-CIVET
|-- docker-entrypoint.sh
|-- Dockerfile
|-- djcivet_site
| |-- db.sqlite3
| |-- djcivet_data
| |-- docs
| |-- djcivet_site
| | |-- __init__.py
| | |-- settings.py
| | |-- urls.py
| | |-- wsgi.py
| `-- manage.py
`-- requirements.txt

5. Follow the remaining instructions to build and test the container with the user-name from your Docker account
and the image-name of your choice (e.g. docker-civet).

14.2.1 Contents of docker-entrypoint.sh

#!/bin/bash
python manage.py migrate # Apply database migrations
python manage.py collectstatic --noinput # Collect static files

Prepare log files and start outputting logs to stdout
touch /srv/logs/gunicorn.log
touch /srv/logs/access.log
tail -n 0 -f /srv/logs/*.log &

Start Gunicorn processes
echo Starting Gunicorn.
exec gunicorn djcivet_site.wsgi:application \

--name djcivet_site \
--bind 0.0.0.0:8000 \
--workers 3 \
--log-level=info \
--log-file=/srv/logs/gunicorn.log \
--access-logfile=/srv/logs/access.log \
"$@"

14.2.2 Contents of Dockerfile

##
Dockerfile to run a Django-based web application
Based on an Ubuntu Image

52 Chapter 14. Appendix 4: Installing in AWS-EB and Docker

CIVET Documentation, Release beta-0.9.1

##

Set the base image to use to Ubuntu
FROM ubuntu:14.04

Set the file maintainer (your name - the file's author)
MAINTAINER Parus Analytics

Set env variables used in this Dockerfile (add a unique prefix, such as DOCKYARD)
Local directory with project source
ENV DOCKYARD_SRC=djcivet_site
Directory in container for all project files
ENV DOCKYARD_SRVHOME=/srv
Directory in container for project source files
ENV DOCKYARD_SRVPROJ=/srv/djcivet_site

Update the default application repository sources list
RUN apt-get update && apt-get -y upgrade
RUN apt-get install -y python python-pip

Create application subdirectories
WORKDIR $DOCKYARD_SRVHOME
RUN mkdir media static logs
VOLUME ["$DOCKYARD_SRVHOME/media/", "$DOCKYARD_SRVHOME/logs/"]

Copy application source code to SRCDIR
COPY $DOCKYARD_SRC $DOCKYARD_SRVPROJ

Install Python dependencies
#RUN pip install -r $DOCKYARD_SRVPROJ/requirements.txt
RUN pip install Django
RUN pip install gunicorn
Port to expose
EXPOSE 8000

Copy entrypoint script into the image
WORKDIR $DOCKYARD_SRVPROJ
COPY ./docker-entrypoint.sh /
ENTRYPOINT ["/docker-entrypoint.sh"]

14.2. Docker 53

	Introduction
	Program Navigation Placeholders
	Status of the Program: 31 August 2015
	Status of the Program: August 2016
	Documentation

	Installing CIVET
	Modifying the default installation

	Authentication
	Creating a superuser
	Additional notes

	Home Page Options
	File selection

	CIVET Coding Form Templates
	Simple Template-Based Data Entry Form
	Command formats
	Specifying variables
	Commands only relevant in workspaces
	Data entry fields
	Linking fields
	Additional web page formatting
	Advanced formating options

	CIVET Workspaces
	Workspace Management
	User-specified annotation vocabulary using category
	Automatic annotation/skip editing mode only:
	Additional information on categories

	Annotation and Editing Collections
	Comments on annotation and editing

	Coding and Text Extraction
	Note on deleting texts

	Preferences
	Programming note

	Projected Features
	Appendix 1: Sample Template File
	Appendix 2: Input Format
	Collection fields
	Category fields
	Text fields
	Case fields
	Date formats
	UTF-8 Encodings
	Sample File

	Appendix 3: Supporting Files and Source Code Settings
	Files in /static/djciv_data
	Additional settings that can be changed in civet_settings.py
	Documentation

	Appendix 4: Installing in AWS-EB and Docker
	Amazon Web Services Elastic Beanstalk
	Docker

