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Preface to the Second Edition

“When I use a word,” Humpty Dumpty said in a rather scornful tone, “it means
just what I choose it to mean—neither more nor less.”

Charles Dodgson (Lewis Carroll)
Through the Looking-Glass

Second edition?!  This thing didn’t even have a first edition!
Well, yes and no. The 1995 version of this manuscript has been around for a while

and, frankly, I’ve done okay by it.  It has been favorably cited in an American Political
Science Review article (Beck, King, and Zeng 2000), and my understanding is that parts
have been used in graduate classes at various institutions, though presumably not
recently. Computer scientists seem to find it more useful than political scientists—make
of that what you will—and every few months I get a phone call or email from some
consultant about embark on a new contract applying computational methods to the
analysis of political behavior who has found the manuscript on the Web and was
wondering what had subsequently become of the enterprise (answer: see
http://www.ku.edu/~keds).

What has not happened is the appearance of this text between two covers bearing
the imprimatur of some august academic press. Wherein lies a sad but not all that
interesting tale of academic life in the last decade of the 20th century: I wrote the
manuscript over a period of years, it was sent out by a major academic press for
comments by two reviewers, I then revised the manuscript to account for those
comments, it was sent out again, and the reviewers still didn’t like it.

At this point the standard operating procedure would have been to further “shop the
manuscript down the food chain” until I found a press who would publish it. But at the
time the revision was rejected, I was in the Middle East on a Fulbright grant, living in a
war zone, and was dealing with an extended serious illness in my family. I’d had tenure
for over a decade, published fifty or so mostly refereed articles, and was having good
success securing external funding for my research. “Artificial intelligence in international
relations” was clearly past its prime as an academic enterprise (another sad history
discussed in the epilogue in Chapter 8) while the automated event data coding techniques
of the Kansas Event Data System project were getting serious attention and competing
for my limited time.

Most importantly, after all of those revisions, I was simply tired of the whole thing.
So I eventually posted the text to the Political Methodology paper server, and went on to
other pursuits.  I occasionally imagined finding a time when I was free from more
pressing obligations and could return to the manuscript to do yet another set of revisions,
update the citations, and perhaps even re-do some of the analyses with computers that
were 1,000 or more times more powerful than those I’d originally used. But somehow
that elusive time “free from more pressing obligations” never occurred.

In 2004, I started work on a new project with Valerie Hudson (Hudson, Schrodt
and Witmer 2004; http://www.nkss.org/)—another refugee from the original AI/IR
group—and went back to borrow some material from the manuscript.  Reading through
the text I—as ever, the totally unbiased observer— concluded “Hey, this stuff isn’t
bad…” But I also concluded that it was so thoroughly a product of the mind-set of the
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late 1980s and early 1990s that it would be impossible to update, and perhaps—for the
purposes of providing a window into that period—it should not be updated.

Two other factors also came into play at this point.  The first was a gradual
recognition—based on my own work and that of virtually everyone else doing research
on any topic—that with the emergence of sophisticated search engines for the World
Wide Web, there were major advantages in a manuscript not being instantiated as dead-
trees-and-ink, as dead-trees-and-ink were quite notoriously inaccessible to Google and its
successors.1

I had also noted the recent comments of Swiss economist Bruno Frey on the
intellectual inefficiency—to phrase the issue more politely than it is characterized by
Frey—of the academic publishing enterprise:2

Many authors feel that the refereeing process robbed them of the chance to really
contribute what they find important and innovative. An example is given by Brian
Arthur, who states that “I put the paper (“Competing Technologies, Increasing
Returns, and Lock-In by Historical Events”, finally published in the Economic
Journal 1989) through eight rewrites in this (revision) process; each time it became
stiffer, more formal, less informative, and as a result more publishable” (Gans and
Shepherd 1994, reprinted in Gans 2000: 35). Sometimes the papers published
reflect more the referees’ than the author’s ideas. Robert Frank (personal
communication 14 May 2002) provides a case in point: his paper (Frank 1987) was
published in the American Economic Review and originally contained two parts.
The first part contained what he really wanted to convey to the readers, and the
second part was a formal appendix Frank himself did not find of much importance.
One of the referees demanded the first part be deleted, and the (according to Frank
clearly less interesting) appendix to essentially constitute the paper. Frank agreed,
because he knew that this was the price to have the paper accepted by the AER.
Many such stories can be heard in our profession.

… [E]ven among extremely successful economists, crowned by the Nobel Prize,
there are some who harshly criticize the existing journal publication system.
Examples are Leontief 1971, Coase 1994 or Buchanan 2000; see more generally
Leijonhuvfud 1973 and Cassidy 1996. … See the responses from 140 leading

                                                  
1 Preservation is different issue.  Which medium will have the edge across the centuries?: The bulky mass
of volumes of acid-free paper, accessible to anyone with a linguistically educated but otherwise unaided
eye, or digital patterns preserved in exquisitely minute optical pits and magnetic domains, accessible only
to advanced technology but stored at high densities and amenable to inexpensive reproduction and
translation across systems and natural languages.  I don’t know the answer.  What I can say—based on a
survey of items sitting in my office—is that the text that clearly will survive is that which is deeply raised
or embossed upon multiple pieces of nearly indestructible plastic, all carrying the identical ritual
incantation: MADE IN CHINA.
2 Frey, to deflect the inevitable accusations of “sour grapes”, prudently prefaces his criticisms by noting

I believe I have some experience and competence in this area. I have published more than 250 papers
in over 140 refereed journals during the period 1965–2002. Among them are leading economics
journals such as AER, JPE, RES, REcsStats, EJ, JEcLit and JEcPersp., but also in political science
(e.g. APSR), psychology, law and sociology journals.  I have written 16 books, served as one of the
two (and later three) managing editors of Kyklos since 1970, am a member of the board of editors of
23 journals and over the years have served as referee for numerous journals. (Frey 2002: 6)
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economists about their journal submission experiences and the list of “classic”
papers once, and often more than once, rejected (Gans and Shepherd 1994). A well-
known example is Akerlof’s “Market for Lemons”, which was rejected by the
American Economic Review and the Review of Economic Studies as being “trivial”,
and by the Journal of Political Economy for being “too general” before it was
accepted by the Quarterly Journal of Economics, which was instrumental in him
winning the Nobel Prize. (Frey 2002, 15, 22)

My manuscript is clearly not Nobel Prize material, but rejection by an editor and a couple
of referees should perhaps not be taken as the final word on its utility.

Finally, the emergence of the PDF page description standard made it possible to
convert the document into a readily accessible format, which had not been guaranteed by
the Microsoft Word  files of the earlier manuscript. More generally, a thorough
reformatting of the document could well preserve a readable version of the text through
another generation or two of software.  I was on sabbatical in 2003-2004, and for a
couple of months faced the prospect of considerable of free time on airplanes, so this
seemed like a worthy investment of time and effort.

Hence the document that you have in front of you in some form.  For the most part
I have simply cleaned up the 1995 manuscript by standardizing fonts3 and reformatting
where necessary.  The new version is physically formatted as a book, with single-spacing,
justified text, and asymmetric margins that allow for binding if you are so inclined. It still
has not had the attentions of a professional copy editor—which undoubtedly would
improve it—and still lacks an index (but then you know how to use the “Search” function
in the PDF reader, correct?).  But otherwise it looks like a book.

So publishers be damned…
An epigraph—chapter 8—contains an update on where I think the field has gone

since the work described in the first edition was completed (and this was, effectively,
around 1994 except for some minor additional updating).  In a small number of places,
I’ve added explanatory footnotes for material that might otherwise make no sense: for
example you young whippersnappers probably don’t remember the days when the Apple
Computer logo was multi-colored.  The remainder of the manuscript is unchanged.

Philip A. Schrodt
Lawrence, Kansas

April 2004

                                                  
3 The entire manuscript uses only the monospaced Courier, sans-serif Helvetica, and serif Times New
Roman fonts, plus the “Symbol” font from the Macintosh computer.  Courier, Helvetica and Times New
Roman are among the most widely used—and most easily substituted—fonts at the present time, and are
likely to remain so in the future.  The “Symbol” font is a bit dodgier but is used sparingly.





Chapter 1
Introduction and Overview

If, with a solemn feeling of the importance of things as they really are, we were
to admit the irregularities of the actual world into the statement of our problems,
we should of consequence have to attend to enormous elaborations of
mathematics in the process of solution, whereby our attention would be for a
long time distracted away from the actual world.

Lewis  F. Richardson

Worrying about complications before ruling out the possibility that the answer
was simple would have been damned foolishness.  Linus Pauling never got
anywhere by seeking out messes.

James D. Watson

In 1519 Hernando Cortes landed on the east coast of Mexico to confront a
civilization arguably more advanced than his own.  Neither Cortes nor any European had
prior knowledge of the culture, languages or history of this system, yet within a couple of
months, utilizing the techniques of Renaissance statecraft, Cortes assembled a successful
military coalition based on Meso-American groups disaffected with the prevailing
political and religious leadership in Tenochtitlan.  That coalition, while ultimately
disastrous for its non-European participants, was in the short run international politics as
usual for both the Spanish and the Mexicans.

This volume presents a set of formal approaches for studying the regularities of
international political behavior.  It is theoretically based in studies of human cognition
and organizational information processing; it is methodologically based in computational
modeling.  The first half of the work argues that political decision-making produces
regularities in international behavior that have not been tapped by the existing statistical,
dynamic or rational choice approaches to formal modeling.  Among the processes
generating those regularities are individual pattern-recognition, the organizational use of
formal rules, and learning, by individuals and organizations, from history and experience.
Those processes can be approximated using computational methods that are specified
algorithmically rather than algebraically.  The second half of the book illustrates the use
of computational models to study a variety of different types of international behavior.

This approach is reflexive: to learn to model a social behavior, model how that
behavior is learned.  A model of international politics can be based on how international
politics itself is understood, and hence organized, by its participants.  My theoretical
approach is presented in detail in Chapter 3 but its outline is simple: patterns, rules and
learning:

ASSUMPTION 1: Individuals understand international events using pattern recognition
Human beings, possessing associative memories, are extraordinarily skillful at

pattern recognition.  This task they find not only relatively painless, but, to judge from
the popularity of crossword puzzles, Trivial Pursuits and Wheel of Fortune, downright
pleasurable.  In contrast, humans are resistant to logical deductive reasoning and avoid
using it whenever possible.  In the absence of pattern recognition, the international
system rarely provides sufficient information for the use of deductive reasoning.
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To “understand” an international event is to fit it to a pattern one has previously
learned through experience, formal education or acculturation.  The most common
patterns are sequences of events: history.  These sequences come tagged with contextual
information—for example, the knowledge that the United States will respond differently
if attacked by Libya than Libya will respond if attacked by the United States.  Patterns
are often based on idealized versions of historical events—Munich, Pearl Harbor,
Vietnam—and some are completely hypothetical, for example the crisis escalations
leading to nuclear war.

Pattern recognition also accounts for the human ability to infer motive and to
correct for missing, deceptive and erroneous information in an observed sequence of
events.  The ability of decision-makers to engage in meaningful behavior depends on
such short-term predictions; without this information international politics would consist
of random events rather than the highly regularized sequences actually observed.

ASSUMPTION 2: Organizations respond to events using rules.
International behavior is primarily the result of organizational decision-making.

Organizations do not possess associative memories and therefore favor deductive
reasoning based on if...then rules.  Compared to the complex patterns accessed by the
human brain, rules are simple, easily stored, and easily transmitted.  Theses rules involve
not only formal procedures, but heuristics, rules of thumb, and shared practices and
expectations that allow an organization to link actions with outcomes.

Because of their orientation to rules, organizations are typically much less flexible
in their information processing than are the individuals who comprise the organization.
Organizations sacrifice flexibility for capacity, but they operate in situations where it is
advantageous to do a very large number of relatively simple things.  The fact that
organizations are large and inflexible contributes to the predictability of international
behavior—the United States does not decide daily whether to invade Canada or to praise
Fidel Castro—even though the irregular sequence of behavior found in crises capture
much of our attention.

ASSUMPTION 3: Foreign policy behavior is affected by continual learning and adaptation.
Information relevant to determining appropriate policies in international politics is

complex, scarce, expensive and exceedingly noisy.  Foreign policy is an ill-structured
problem: optimization techniques that might work in the design of an bridge or the
determination of price in a market are usually ineffective.  While the international system
may be equilibrium-seeking, it typically reacts slowly and incrementally, and the
equilibria to which it is moving are be based on information years out of date.  The
international system is very different from a market.

In place of optimization, the international system uses adaptation.  Organizations
do not make the same major, obvious mistake twice; successes reinforce the patterns and
rules that generated them.  The behaviors of a complex organization are thus grown
rather than designed.  Memory is found in the minds of its practitioners and the rules of
its organizations.  Organizational memory is imperfect and systematically rather than
randomly distorted, but it exerts a profound influence over organizational behavior.

From these assumptions, I conclude that the international system, despite its quasi-
anarchic character, self-organizes and exhibits regular behavior that can be mimicked, to
an extent, by computational models.
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Models
The primary motivation behind this work is the development of formal models.1

These models are a simplification in international behavior, but it is the job of models to
simplify.  The historian and the journalist can deal with the complications of events in all
their detail; the task of the social scientist is to find some means of simplifying that
torrent of information.  Ashby observes:

…every model of a real system is in one sense second rate.  Nothing can exceed, or
even equal, the truth and accuracy of the real system itself.  Every model is inferior,
a distortion, a lie.

No electronic model of a cat’s brain can possibly be as true as that provided by
another cat, yet of what use is the latter as a model?  Its very closeness means that it
also presents all the technical features that make the first so difficult [to study].
(quoted in Fiorina 1973,136)

To the extent that a formal model can remain empirically accurate while
simplifying, it has utility.  Computational modeling dictates a particular set of
compromises; correlational statistics, differential equations, expected utility or two-
person games would dictate others, as would an emphasis in a traditional theory on power
or on economic inequality.  The choice of any tool or approach closes some doors while
opening others.

My efforts are addressed primarily to a behavioralist audience and proceed from
behavioralist premises such as the desirability of unambiguous specification of concepts,
utility of formalism, the necessity of replicable empirical tests, and so forth.  However,
my approach departs from the simple equations, borrowed from the physical sciences that
characterize much of formal modeling in political science.  There is a vast difference
between studying falling rocks and studying politics, for rocks do not alter their behavior
to suit prevailing theories.  Human decision-makers convinced of the legitimacy of
theories of nuclear deterrence will proceed to act in accordance with those theories;
nuclear weapons, in contrast, are by all indications completely indifferent to the theories
concerning their use.  My general philosophical approach is closer to that of Weber than
Newton, Marx or Pareto:

On the other hand Max Weber viewed the notion of a social science which would
consist of “a closed system of concepts, in which reality is synthesized in some sort
of permanently and universally valid classification, and from which it can again be
deduced” as entirely meaningless.  … [For Weber,] the subject matter of the social
sciences—human action—involves value orientation, memory and learning, which
can only yield “soft” regularities, “objective possibilities” and probabilities.
(Almond 1988,837)

In a computational model, the Weberian elements of values, memory and learning
can be introduced, but at the expense of parsimony.  Computational models are far more
                                                  

1 I will be using the concepts of a model and a formal empirical methodology interchangeably, though
political science tends to treat them separately.  A regression equation is a model—in fact when fully
explored in the context of probability theory it is an extremely complex model—even if we treat it merely
as a "technique" to be chunked through using SAS.
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complex than differential equations or expected utility calculations, though not much
more complex than a large global model or the specification of the maximum likelihood
estimators for a large system of equations.  The simplicity of a computational model lies
in its postulated processes; these models also use a great deal of domain-specific
information because human decision-makers use a great deal of domain-specific
information.  However, because computational models are specified in an unambiguous
form, the process by which this information is employed can be replicated and studied.

A variety of arguments can be made for the intrinsic value of formal models but,
briefly stated, natural language is not a particularly good medium for developing
complex, logically consistent arguments when compared to “formal” languages such as
mathematics.2  McCloskey notes

The economic conversation has heard much eloquent talk, but its most eloquent
passages have been mathematical. ... The American Economic Review of the early
1930s, by contrast, contained hardly an equation; assumptions were not
formalized...  The consequences of the primitive machinery for conversation was an
inability to speak clearly.  Economists could not keep clear, for instance, the
difference between a movement of an entire curve and a movement along a curve.
Being mathematically innocent, they were unable to talk in curvy metaphors.
...Economists before the reception of mathematics fell headlong ... into confusions
that a little mathematics would have cleared up. (McCloskey 1985,3)

Natural language can be very ambiguous and a theory may appear to be successful
because it can be warped to fit any situation: “Balance of power” is the obvious example
here.  Richardson noted:

Another advantage of a mathematical statement is that it is so definite that it might
be definitely wrong... Some verbal statements have not this merit; they are so vague
that they could hardly be wrong, and are correspondingly useless. (Newman
1956,1248)

Formalization is as fundamental to the development of human knowledge as
writing or music, and attempts to apply formal methods to the study of human behavior
date from the Enlightenment in the efforts of Leibniz, Laplace, Condorcet and others.  In
some studies of human behavior—economics, public health, demographics, election
forecasting—these formal approaches have become the dominant approach; in the study
of international behavior they have been less successful to date.  But the goal is still
worth pursuing.

Rationality

For reasons that will be discussed in considerable detail in Chapters 2 and 3, this
work de-emphasizes the role of rationality as it is currently understood in the formal
modeling literature.  There are at least three reasons for this.  First, I will argue that
pattern recognition is a necessary prerequisite for any self-contained “rational” model of
political behavior.  Unlike a market, the international system rarely provides reliable
information about the consequences of ones actions, or even on many of the critical

                                                  

2Archibald and Lipsey (1976,1-10) provide a particularly good rendition.
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variables reflecting the state of the system; this information must instead be inferred.
Any model that presupposes this information—and that is the case with most rational
choice analyses of international politics—is as much a model of the modeler as it is a
model of the system.

Second, I am concerned about the disjuncture between the assumptions of the
rational choice approach and the observed behavior of organizations.  This is scarcely a
novel criticism—most of these arguments were elucidated three decades ago by Simon,
March and others, and the applicability of the rational choice model to individual
decision-making has been under empirical attack from cognitive psychologists such as
Kahneman and Tversky for the last decade and a half.  This debate often rages at a near-
theological level, and I make no claims of contributing to its resolution, but it will
become quickly apparent that I’m more convinced by the critics of rational choice than
by its proponents.

More generally, I am concerned by the failure of many proponents of the rational
choice approach to subject their models to large-sample empirical tests.  As noted in
Chapter 2, this situation has improved in recent years, particularly in the work of Bueno
de Mesquita and his co-authors, and is obviously justified when dealing with
counterfactuals such as the failure of nuclear deterrence.  It is not justified when dealing
with models of conventional war initiation, crisis, arms control or balance of power.  The
relevant data are available or could be collected; the requisite statistical tests are available
or could be developed.

Given my de-emphasis on the rational choice approach, two caveats are in order
(and will be further elaborated in Chapters 2 and 3).  First, my emphasis on the intuitive
and the routine in international affairs is not meant to imply that rigorous deductive
thinking plays no  part in foreign policy decision-making.  To the contrary, the
examination of international affairs in any century will reveal a great deal of
cleverness—for good and evil—and the issues of international politics have without
question attracted some of the greatest political minds of each era.  I am arguing,
however, that these plans occur against a background of regularities that are, for the most
part, determined by intuitive understanding and the routine application of rules.  While
analyzing the chess-like strategies of international politics is fascinating, we also need to
occasionally step back and ask why the chess pieces are constrained to move as they do,
and what contributed to the design of the board and the pieces.

Second—as I hope to make clear in Chapter 2—I am not completely rejecting
formal models of rationality based on optimization under constraints, and I am certainly
not rejecting formal modeling.  While the reader glancing at chapters 5 and 6 may find
the latter statement ludicrous, suffice it to say that on multiple occasions my efforts at
developing an alternative to rational choice have been deemed a “betrayal” (the critic’s
choice of words, not mine) of the heroic effort to mathematically unify the study of
international politics within the framework of microeconomic optimization.3  Such
doctrinarian defensiveness—ontological arguments divorced from empirical
validation—disturbs me: As a paradigm within the behavioral sciences, rational choice

                                                  

3 Judging from Green and Shapiro (1994,Chapter 8), this vintage whine is endemic among defenders of
rational choice.
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should be willing to tolerate alternative approaches and should be prepared to defend the
validity of its assumptions rather than imposing them as an article of faith.

Artificial intelligence

As reflected in the titles of Sylvan and Chan (1984), Cimbala (1987) and Hudson
(1991), the style of modeling used here was originally characterized as “artificial
intelligence” (AI).4  The links between the computational modeling efforts in
international politics during the 1980s, and the concurrent developments in artificial
intelligence at that time are discussed in detail in Schrodt (1988b, 1991b), and during
much of this period, the type of modeling discussed in this book was considered by its
developers to be AI.

This characterization has changed for two reasons.  First, the term “AI” is so broad,
and so over-hyped, as to be both ambiguous and disadvantageous as a label.  Second, and
more importantly, most of the methods discussed in this book—with the exception of
rule-based models—came from the fringes of 1980s AI,5 and in several instances the
methods are closer to those of statistics than AI.  In the harsh light of the 1990s, most of
the core AI technologies that originally appeared to be applicable to the study of
international politics—for example scripts, story generators, case-based reasoning and
natural language processing—were never demonstrated as leading to working systems
that could deal with large amounts of data.  In addition, with the exception of a
dissertation or two, there is little evidence that computational modeling in international
politics has had any influence on AI, in contrast for example to the influence that work on
expert systems had for medical diagnosis.

As a consequence of this disjuncture, in this book I’ve consistently used the term
“computational modeling” rather than “AI”, even though much of the work was
originally labeled by its authors (including myself) as artificial intelligence.  The
computational modeling designation is now widely used within the international relations
community and is appropriate since algorithms generally define the techniques rather
than by algebraic or statistical theory, they can be practically implemented only on digital
computers, and they were developed with the strengths and weaknesses of the computer
in mind.

Methodology
Social science methodology involves the development of tools that enable one to

discover regularities that cannot be uncovered without their aid.  In international
relations, the use of computerized analysis bears the same relation to the traditional
approaches of “wisdom”, slow journalism and postmodern textual exegesis as a chain
saw bears to a flint ax, a bronze scythe or a feather pillow.  A chain saw is not always an
appropriate tool: it is more trouble than it is worth when clearing small brush, it is

                                                  

4 Russell and Norvig (1995) provide a contemporary survey of this field; Barr, Cohen and Feigenbaum
(1982), Winston (1984), and Charnick and McDermott (1985) show the fields as it was in the mid-1980s;
Crevier (1993) provides an interesting analysis of the social, intellectual, and troubled history of the field.

5 Neural networks and genetic algorithms are mainstream AI technologies today, but they were definitely
considered fringe when the AI/IR literature was developing in the 1980s.
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positively disadvantageous when cutting into a soufflé, and unlike a feather pillow, it is
dangerous in untrained hands.  Knowledge develops through the creation of appropriate
tools: as long as one knows when to leave a tool on the shelf, one can never have enough
tools.

There are typically two different approaches to tool development.  One can take a
single tool and refine it: development in depth.  Alternatively, one can develop a series of
simple tools that attack various and disparate parts of a problem: development in breadth.

Development in depth is most familiar to social scientists, particularly those
working with statistical approaches.  Most social science statistical modeling relies on
variations of a single technique, the “general linear model”, that encompasses correlation,
multiple regression, factor analysis, discriminant analysis, ANOVA and so forth, and can
be used in both cross-sectional and time series research designs.  By investing a great
deal of effort on this single model we know its quirks and capabilities in considerable
detail.

I would suggest, however, that with our limited understanding of international
behavior, there is also a place for tool development in breadth.  International politics is a
complex phenomenon unlikely to reduce to a few simple equations, and the human
objects of our study may employ different methods to solve different problems.6  I am
consequently reluctant to identify a single technique that I consider worthy of a
discipline-wide research effort in depth: the development efforts should proceed in
parallel, not serially.

An historical analogy has been influential in my choice of this strategy.   With the
hindsight of history, we can see that in 1900 there were two significant projects in the
United States working towards heavier-than-air flight.  The project with the money and
the heavy-duty technology was headed by the patrician Samuel Pierpont Langley,
working out of the Smithsonian Institution with substantial government funding.  The
project that would succeed, of course, was that of bicycle mechanics Wilbur and Orville
Wright, working in Dayton, Ohio with canvas and baling wire.

While both projects were based on the theoretical work in aerodynamics
established by German researchers such as Otto Lilienthal, their strategies differed
dramatically.  Langley developed his project de novo.  He succeeded in constructing a
flying prototype of a machine about the size of a modern model airplane, then attempted
to scale this up by almost an order of magnitude.  The resulting craft was launched from a
houseboat in the Potomac, quickly became unstable, crashed and could not be rebuilt
because of its cost.  End of project.

The Wrights, in contrast, used an incremental strategy based on extensive empirical
testing, starting with kites and models and gradually scaling up to a motorized human-
carrying craft.  This approach had two advantages over that of Langley.  First, in their
early, small scale experiments the Wrights were able to isolate the causes of failures, and
in particular made critical discoveries about control—problems that had killed
Lilienthal—at the stage of non-powered flight where the weight and torque of a motor
                                                  

6 The development of models in breadth seems to common in the decision-making literature in
international relations: For example Allison's (1971) classic study of the Cuban Missile Crisis developed
three different models to explain the same set of events.  Jervis (1976), Lebow (1981) and Vertzberger
(1990) provide other examples of model development in breadth.  The rational choice and statistical
traditions in international relations, in contrast, generally develop tools in depth.
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were not an issue.  Second, damage to their simple systems could be repaired in hours or
days, so an erroneous hypothesis only delayed the research rather than terminating it.

The research community developing computational models of international
behavior is working with at least two, and probably three, things we know little about:
We clearly are using new techniques.  There is almost universal agreement that we need
new data.  And I suspect, in a Kuhnian fashion, that ultimately we will find ourselves
asking new types of questions.  In such an environment, the Langley strategy of assuming
that the right combination of methods and data and questions will come together all at
once seems risky.

In 1992, an issue of Science surveyed how several new techniques in the physical
and biological sciences had revolutionized not just the methodologies, but also the
theories, in their fields.  The article observes:

Not everybody appreciates the importance of technique.  Many scientists, in fact,
are “theory snobs” who dismiss technique as a kind of blue-collar suburb of
science. ... [But there is], clearly, enormous transforming power in techniques.  In
the absence of an essential technique, a researcher or a field flounders, developing
elegant theories that cannot be decisively accepted or rejected—no matter how
many intriguing circumstantial observations are available.  But with a key
technique in hand, the individual and field move ahead at almost terrifying speed,
finding the right conditions to test one hypothesis after another.  Conversely, new
techniques often uncover new phenomena that demand new theories to explain
them.  (Hall 1992,345)

Contemporary international relations research is arguably theory rich and data poor.
In contrast to our colleagues in U.S. and European politics, who are provided data from
the massive public opinion surveys of the U.S. National Election Study and Euro-
Barometers, as well as governmental surveys such as those provided by the U.S. Bureau
of the Census, Bureau of Labor Statistics and Department of Justice, we have relatively
little data on international interactions.  Concurrently, the international system is
becoming more complex with the end of the Cold War, and the need to systematically
study alternative theoretical explanations for that behavior is greater than ever.

It is not coincidental that the root of “statistics” is the same as that of “state”: for
several centuries those in powerful positions—governments and corporations—have
known that much can be learned from the study of the regularities of aggregate behavior.
In the 20th century that use of information has become much more decentralized.
Among the formal concessions to the democratic process made by the Sandinista
government of Nicaragua at a conference of Central American presidents in August, 1989
was a promise not to interfere with public opinion polling.  A statistical methodology was
thus elevated to a fundamental democratic right.  Modern social and political activities,
from tax policy to health care to advertising, presuppose mathematical regularities.  The
knowledge gained from these formal studies is imperfect but it is certainly an
improvement on the superstition and convenience sampling they displaced.
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Validation
Mathematical social science is first and foremost social science.  If it is bad social
science (empirically false), the fact that it is good mathematics (i.e. logically
consistent) is of little comfort.

Herbert Simon

Any proposed universal law of human behavior should be demonstrated to apply in
at least one case.  Formal models can, and should, be tested; models without empirical
tests are at best of heuristic value.  It is easy to write equations that at least vaguely
mirror human behavior; the challenge lies in finding systems that do this beyond the level
expected by chance.  Eyeballing will not suffice: the human brain is highly susceptible to
seeing patterns where none exist and is notoriously poor at statistical reasoning.

This work deals with the substance of international politics in the sense that it is
contains explicit assumptions about how decisions are made, about how international
behavior is understood by its practitioners, but it deals with specific situations only in the
context of empirical demonstrations of various models.  It contains no new insights on
the Cuban Missile Crisis, the US involvement in Vietnam, or the end of the Cold War.
Fundamentally, it is about fishing rather than fish, though any work on fishing will pay
some attention to the characteristics of fish.

All of the models I discuss in this volume have been tested against data on actual
international behavior.  The tests are illustrative rather than definitive as the data sets are
adequate rather than perfect: For reasons that will be explored in more detail in Chapters
2 and 3, the theory of data underlying computational modeling differs substantially from
that underlying much of the existing behavioralist enterprise, which is based almost
entirely on parametric (and usually correlational) statistics.  But those data reflect at least
some aspects of the empirical world and are certainly better than nothing.

There is a chicken-and-egg problem here.  One could insist on collecting
appropriate data before attempting to test a new theory or method.  However, twenty or
thirty years of experience in international relations research has shown that collecting
data can take, well, twenty or thirty years, as well as being horrendously expensive.7  By
the time the data are collected, both the theories and techniques may have changed.  The
available data sets on international behavior are adequate to illustrate many of the
strengths and weaknesses of computational modeling; demonstrations of the full potential
of these methods will have to wait for new and more appropriate data sets.

Prerequisites
Political scientists are the intended audience for this book, and I’ve attempted to

maintain a technical level comparable to the American Journal of Political Science.
Individuals with training in economics should not encounter difficulty understanding the
arguments, nor should quantitatively trained psychologists and sociologists.  The
mathematical content of the book is very limited—for example there are no proofs—and

                                                  

7 The Correlates of War and CASCON projects come to mind, though useful research could be done with
those data after five to ten years of collection.
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the mathematical notation used is comparable to that of a basic probability and statistics
text.  I assume the reader to be acquainted with contemporary social science statistical
and data collection techniques and do not discuss the statistical models—for example
logit and discriminant analysis—that I’ve tested as alternatives to the computational
models.

In place of proofs, most of the formal presentation is in the form of algorithms
presented in a Pascal-like pseudo-code.  These are supported by some discussion but, as
with a proof, the discussion alone is insufficient to render the technique completely clear
unless one is already acquainted with the basics of algorithms.  I have endeavored to keep
this level of detail comparable to that found in computer publications aimed at computer
professionals who are not academic computer scientists—for example Byte—rather than
at the level of Communications of the ACM or technical journals on artificial intelligence.

I am often asked whether it is possible to understand and utilize computational
models without doing computer programming.  I suppose the answer is affirmative, but
the experience would be akin to moving snow with a garden rake: it can be done as an
expedient but involves ten times more work than the same task with the proper tools.
The basic techniques of computer programming are easily learned in a few weeks, the
subject is taught at virtually every college and university—as well as many secondary
schools—and in the 1990s it is unlikely that the effort required to learn computer
programming will be totally wasted in the long term.8

That being said, shareware and commercial software is available to implement
many of the techniques discussed here, including rule-based systems, genetic algorithms,
correspondence analysis and neural networks.  ID3 is also widely implemented in expert-
systems packages, though often not by that name.  I have usually added a twist or two to
the standard techniques—for example bootstrapping the ID3 algorithm—though the
commercial packages contain their own twists that can also be useful.  Sequence analysis
methods and sophisticated rule-based simulations such as JESSE and POLI, on the other
hand, necessarily involve custom programming.

The language used in this research was Pascal, which I prefer for developmental
work because it tends to self-document and employs strong type-checking.  I will be
happy to provide the source code for these programs to interested academics in “as is”
condition; the code is generally follows the de facto “Turbo Pascal” (rather than ISO)
standard.  These are research rather than production programs, so the input formats are
often quite idiosyncratic and involve considerable pre-processing of data.  The core

                                                  

8 Mastery of computer programming takes substantial practice beyond learning its fundamentals, but in that
respect programming is no different from learning a natural language or a statistical technique.  I have often
seen graduate students claim they "can't program" while devising extensive files of SPSS or SAS
commands that are nothing more than needlessly elaborate programs performing tasks that could be much
more easily accomplished using Pascal, C, or FORTRAN.

Many political science graduate curricula anachronistically recommend that students supplement their
training in formal methods with one or two courses in basic calculus.  While calculus reinforces algebra
skills and may be useful in some simple rational choice and dynamic models, it is usually quickly forgotten
and a two-semester course is inadequate for analytical work in advanced econometrics or mathematical
statistics.  If one expects to invest only a limited amount of time in learning formal methods, I suggest that
coursework in elementary computer programming and data structures will be far more useful than calculus,
particularly when dealing with social science datasets.
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algorithms used are sufficiently simple that for most applications, it will be easier just to
start over and write a new program.

All of this research was done on personal computers: the earliest work was done on
a lowly but expensive 64Kb Apple II running at 1 Mhz; the most recent work was done
on a 8Mb Macintosh II supplemented with a 50Mhz coprocessor.  Contemporary
computer hardware is dramatically less expensive and more powerful than it was when I
began this research around 1984—to say nothing of the bad-old-days of
mainframes—and many of the projects that took me days or weeks of processing could
be done much more quickly today.  Consider these efforts as a starting point, and go on
from there.

Organization
This book is approximately half theory and half computational techniques. Chapter

2 is a survey of existing mathematical models with the objective of identifying
weaknesses in those methods that such be filled by a computational modeling approach.
Chapter 2 presupposes some familiarity with academic research in international relations:
Those who are primarily interested computational modeling per se can safely skip it;
political scientists will probably want to read it.

Chapter 3 provides a theoretical justification for computational modeling using the
patterns/rules/learning approach.  This chapter relies heavily on literature in psychology
and organizational behavior as well as classical international relations, though it uses
those literatures only to the extent that they relate to computational modeling rather than
providing a thorough literature survey.  The development focuses on identifying the
foreign policy decision-making processes and international behaviors that can be
expected to be appear regular from the standpoint of the assumptions of computational
models.  To this extent, Chapter 3 simply justifies the choice of a set of models and their
independent and dependent variables, but given the novelty of the computational
modeling approach, it does so in considerably more detail than is normally found in
empirical work.

Chapter 4 covers rule-based models.  It is the only chapter without an original
empirical test and focuses instead on models developed by other researchers.  Rule-based
models are the most widely used type of computational model in international
politics—more than half of the articles in Cimbala (1987) and about a third of these in
Hudson (1991) employ the approach—so their justifications and methodology have been
discussed extensively elsewhere.  I review some of the basic premises, techniques and
problems of rule-based modeling but, having been encouraged to confine this manuscript
to a finite length, the discussion of rule-based modeling is not nearly proportional to the
importance of the technique in the computational modeling literature as a whole.

Chapter 5 deals with several machine learning methods.  The discussion covers
ID3, a method of generating classification rules; genetic algorithms, which produce rules
using a system of simulated evolution; neural networks, a method based on information
processing in biological nervous systems that I argue parallels several important
structural characteristics of organizational decision-making; and nearest-neighbor or
clustering methods, which overlap with some of the techniques used in statistical
modeling.  The ID3 and neural network methods are applied to the Butterworth interstate
conflict data set; the genetic algorithm is used to predict patterns of international behavior
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found in the COPDAB event data set and the nearest-neighbor method is illustrated by
using correspondence analysis to cluster the rule-governed international systems
proposed by Kaplan (1957) and Rosecrance (1963).

Chapter 6 deals with sequence analysis and is the chapter most specific to
international relations research.  These methods directly model the recognition of event
patterns that I argue are central to human understanding of international politics.  The
Levenshtein metric, a method originally developed for the comparison of sequences of
DNA, is combined with a training method similar to that used in neural networks to
differentiate between crisis and non-crisis sequences in Leng’s (1987) Behavioral
Correlates of War (BCOW) data set.  The BCOW data are also analyzed with an
algorithm that finds similar subsequences in multiple crises; nearest-neighbor methods
based on these subsequences can then be used to categorize the larger sequences.

Chapter 7 concludes with a consideration of several issues related to computational
modeling generally.  These include a comparison of the computational modeling
approach and classical approaches to the study of international behavior; two key
limitations of the method; a defense of the use of induction, and a discussion of the
implications that developments in computer technology and data sources might have for
future research using computational models.



Chapter 2
Formal Models of International Behavior

[Human and physical events are] equally susceptible to being calculated and all
that is necessary to reduce the whole of nature to laws similar to those which
Newton discovered with the aid of calculus is to have sufficient number of
observations and mathematics that is complex enough.

Condorcet (1743-1794)

To understand a science it is necessary to know its history.
Auguste Comte

A perennial affliction of the behavioral approach to international politics has been
the obsession with philosophy of science: in the words of Kenneth Oye (1987), “To avoid
studying world politics, study how others study world politics”.  While in general I am in
sympathy with Oye’s complaint, I am also sensitive to the admonition “Before you figure
out where you’re going, figure out where you are.”  This volume proposes a variety of
approaches and methods, which, if taken seriously, would require a substantial
investment of time and effort.  With that prospect, only the most avid collector of new
techniques would fail to ask whether it is really necessary: if it ain’t broke, why fix it?

I contend that it’s broken—after thirty years of work on formal models of
international behavior, we have yet to create models that have an influence comparable to
that of public opinion models in domestic political studies or economic models in that
field as a whole.  Some isolated triumphs exist—most notably the game theoretic analysis
of nuclear deterrence, possibly the Richardson arms race model and recently the
empirical generalization that democracies don’t engage in wars with each other—but
after three decades of effort, it is still difficult to convincingly identify a set of politically
relevant knowledge obtained primarily through formal or quantitative analysis.  This
chapter will survey what has been achieved in formal modeling to date, identify some of
the problems in those efforts, and briefly introduce computational modeling as an
alternative approach.

A Typology of Mathematical Models
Almond (1988, 1990) provides a long-overdue review of the origins of the

scientific approach to the study of politics.  In an extensively documented historical
discussion, Almond notes that popular mythology, particularly prevalent among Marxists
and Straussians, credits the development of “scientific” approach to a Sputnik-crazed
United States at the [choose one]:

• height of its Cold War imperial dominance of the global order (Marxists);

or

• nadir of the popularization of the previously august academy by the unwashed masses
unleashed by the post-WWII GI Bill (Straussians)

In reality, scientific approach had deep European roots dating to the mid-19th
century:
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There were two schools of thought in the 19th and early 20th century social science
regarding the possibilities for a science of social behavior.  The work of Auguste
Comte, Karl Marx and Vilfredo Pareto makes no distinction between the social and
the “natural” sciences.  Both groups of sciences sought uniformities, regularities,
laws. … [The] counterposition of a European and an American approach … around
the issue of humanist vs. scientific scholarship will simply not bear the light of day
(Almond 1988,837-839)

This tradition was transmitted to the United States by the influx of European social
scientists fleeing Nazi persecution in the 1930s, and found fertile ground in North
America already prepared by Charles Merriam and the “Chicago School”.1

Concurrently, political science was influenced by the axiomatic modeling of neoclassical
economics, starting with  the work of Léon Walras and his successor Pareto, that sought
to develop a mathematical science of economics similar to the highly successful models
of 19th century mechanical physics (see Ingrao and Israel 1990).

In addition to the philosophical roots noted by Almond, two technological factors
played a role in the rise of the scientific approach.  First, the increase in international
communications made more data available.   A state such as Thailand ceased being the
mystical and exotic kingdom of Siam, and became just another data point in the UN
Statistical Yearbook.  Those data were frequently flawed but were decidedly better than
nothing: Since the purpose of statistical analysis is sorting signal from noise, imperfect
data present a only challenge, not an insurmountable obstacle.

Second, the influence of computers cannot be overrated.  Electronic data analysis
finally provided social scientists with tools sufficiently powerful to systematically study
social behavior.  The motion of an object falling in a vacuum can be modeled by a single
equation so simple that it can be taught in high school calculus; the study of an electoral
system requires a computer.  In the words of Lave and March (1975,2), “God has chosen
to give the easy problems to the physicists”.  For example, the inversion of a 30 by 30
matrix  is estimated to have taken about 10 weeks of effort for a team of human
“computers” using mechanical calculators; this is a fairly typical calculation in an
exploratory technique such as stepwise least-squares or factor analysis.  Statistical
analysis at the scale common today was impossible forty years ago.

The development of the scientific approach in international relations in the post-
WWII period was also influenced by the Department of Defense use of researchers from
the natural sciences and engineering to study political phenomena.  During the 1950s,
formal approaches to international conflict were extended by game theory, operations
research and simulation work sponsored by the RAND Corporation, the Office of Naval
Research and other defense-oriented groups (e.g. Williams 1954, Goldhamer and Speier
1959, Saaty 1968, Schelling 1960).

                                                  

1 In international relations, the influence of the University of Chicago was noticeable , for example through
Quincy Wright, Harold Guetzkow, Morton Kaplan and Rashevsky's work in publishing Richardson's opus.
Karl Deutsch also notes Wright's influence in formal comparative approaches such as those of Ernst Haas,
Amitai Etzioni and himself (Wright, 1964: xvi).  Chicago's Hans Morgenthau, now considered the
archetype of the classical approach, forcefully contends in the first chapter of Politics Among Nations that
the realist theory he develops is "scientific".
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The serious development of mathematical models of international behavior in the
academic community effectively dates from the founding of the Journal of Conflict
Resolution in 1957 and was ably ushered into the 1960s with the help of researchers such
as Anatol Rapoport, Kenneth Boulding, Richard Snyder and Harold Guetzkow, who
brought to the discipline substantial skills in experimental design and mathematical
modeling.  By the mid-1960s, coincident with the upheavals of the “Behavioral
Revolution”, mathematical modeling secured a place in the study of international
relations from which it has yet to be dislodged.

International relations is now one of the most developed subfields of political
science in terms of mathematical models (see Cioffi-Revilla 1979; Nicholson 1989; Ward
1985; Luterbacher and Ward 1985; Zinnes and Gillespie 1976) and employs a
wide—perhaps excessive—range of mathematical techniques.2   By the early 1980s, most
formal models in IR could be classified into one of three categories:

Statistical models.  These are usually correlational models, but occasionally involve
the development of original statistical techniques.  The statistical models have been
accompanied by large-scale data collection efforts dealing with war, international events,
and international attributes.  A closely related set of models has used stochastic modeling
techniques such as the Poisson model, simple models of contagion and diffusion, and
Markov chains.

Dynamic models.  Differential equation models developed out of the Richardson
arms race model tradition and became a substantial, if specialized, literature.  Computer
simulation developed jointly out of a human-machine simulation tradition (for example
the RAND Corporation’s war and crisis simulations, and Guetzkow’s INS simulation
work); and all-computer simulations, particularly “world models” coming out of the
Forrester tradition (see Ward 1985).

Rational models.  Rational choice models of international behavior primarily
involve decision-making under uncertainty using the expected value decision making
framework.  Game theory models of interdependent choice have been particularly
important to the study of international conflict.  The mathematical techniques and most of
the assumptions usually have been borrowed from economics with few modifications.

Due to their paradigmatic history rather than logical necessity, the underlying
assumptions of the models in these categories tend to be almost mutually exclusive.
Statistical studies are inductive and usually deal with aggregated data; only recently have
they used time series approaches or explicitly tested hypotheses based on assumptions of
rationality.  Dynamic models, following Richardson, tend to avoid explicit assumptions
of rationality; until fairly recently rational models have not to incorporated explicit
notions of time.  In the last ten years greater efforts have been made to bridge these gaps,
but they are still incomplete.

The successes and failures of each of these general types of models will be
discussed in turn, with the not-so-hidden agenda of showing that each has some
                                                  

2These vary as widely as graph theory (e.g. Saaty 1968), optimal control theory (Gillespie et al 1976), field
theory (Rummel 1972) and catastrophe theory (Holt, Job and Markus 1978; Zeeman 1976).  Unfortunately,
few of these approaches have been applied in multiple domains, which has contributed to the
methodological fragmentation of the literature.  Such eclecticism is less prominent in rational choice, which
has the advantage of receiving most of its outside advice from economics—a relatively mature and stable
social science—rather than from borrowing from natural sciences ranging from meteorology to topology.
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substantial weaknesses.  The discussion assumes that the reader is already familiar with
the basic modeling approaches, though citations are given to appropriate reviews of the
relevant literature.

Statistical Studies
I must confess that I believe quite firmly that an inductive knowledge of a great
number of things in the future is becoming a human possibility.  So far nothing has
been attempted, so far no first-class mind has ever focused itself upon these issues.
But suppose the laws of social and political development, for example, were given
as many brains, were given as much attention, criticism and discussion as we have
given to the laws of chemical composition during the last fifty years -- what might
we not expect?

H.G. Wells

The statistical approach to the study of international behavior is sufficiently well
known as to require little explanation; for reviews of this literature see Zinnes (1976),
Vasquez (1976), Chase-Dunn (1979), Midlarsky (1989), Vasquez and Henehan (1992),
Wayman and Diehl (1994) or any issue of International Studies Quarterly, International
Interactions, or Journal of Conflict Resolution for the past twenty years. Statistical
studies are a form of model, both in the explicit models found in regression analysis or
factor analysis, and in terms of the complex mathematical framework underlying tests of
significance and parameter estimation.  In virtually all of the statistical literature, these
assumptions are taken as givens, but they are assumptions nonetheless, and as susceptible
to misspecification as the explicit assumptions regarding the choice of variables and the
algebraic form of the model.

In stochastic models, the dependent variable is random and is explicitly studied as
such.3  The predictions of stochastic models are probability distributions rather than
individual points, and the mathematical techniques come primarily from probability
theory rather than deterministic calculus or linear algebra.  While the concept of
randomness is found in many of the other models in political science, it is usually
considered as “error”, “imperfect information” or some other undesirable characteristic,
whereas in stochastic modeling randomness is the primary focus.  Because stochastic
models deal with probability distributions rather than points, they are more difficult to
work with analytically and empirically, but there is still a substantial literature dealing
with them.

                                                  

3Bartholomew (1971) provides a general introduction to the models commonly used in the social sciences;
Schrodt (1985b) provides a survey of these models with respect to international relations research; and
King (1989a, 1989b) provides a sophisticated integration of the stochastic modeling and statistical
approaches.



Formal Models of International Behavior 17

Successes of the Statistical Approach
It basically works.

The most fundamental success of the statistical approach is the fact that it works at
all: Techniques originally developed for the study of phenomena unrelated to
international behavior—for example agriculture, medicine, economics, voting— will by
and large give reasonably coherent results when applied to international politics.  This
proposition is considered self-evident now but was quite controversial when first
proposed.  The basic problems of data collection, validity and reliability that might have
doomed the statistical approach have been resolved, even if more subtle problems remain
and there is clearly additional work to be done (see King, 1989a; Most and Starr 1989).

After the testing of thousands of hypotheses, some general results have emerged
that can qualify as statistical “fact” in the sense that a number of researchers, using a
variety of techniques, have come up with the same results (see Vasquez 1976; Midlarsky
1989; Gochman and Sabrosky 1990; Wayman and Diehl 1994). In this category I would
place, for example, the Poisson distribution for the occurrence of war, the lack of
statistically significant interactions in the Richardson arms race model, the symmetry of
dyadic behavior reported in event data, the correlation (though not the direction of
causality) between military expenditures and participation in international conflict, and
the pacific character of relations between democracies.  While future research may
provide new explanations for these results, it is doubtful that the empirical findings
themselves will be refuted.

Statistical refutation of the simpler versions of the realist approach.

Most of the work on war and alliances has, implicitly, been in the power-oriented
“realist” framework and tested hypotheses suggested by that literature; Wayman and
Diehl (1994) provide a comprehensive survey of these efforts.  To the extent that the
hypotheses tested are accurate reflections of that approach, the statistical studies provide
little support for it.  The realist response, predictably, has been that statistical tests do not
capture the subtleties of the theory.  If this is true, the statistical studies have at least
established that these subtleties verge on the metaphysical.  The empirical inconsistencies
in classical combinatorial balance of power heuristics linking alliances and war that have
been demonstrated by the Correlates of War research are a major accomplishment, albeit
one that the researchers probably didn’t originally expect.

More generally, statistical studies find that the international system is a lot more
complicated than first believed by the quantitative researchers.  While this is sometimes
seen as an indictment of the scientific approach, it applies at least as strongly to such
hoary aphorisms as Qui desiderat pacem, præparet bellum that have long been used to
justify policy.  With a few exceptions, we now know that simple generalizations do not
work, and additional variables alone do not provide a quick fix: The gems of wisdom
must be mined from hard rock rather than plucked from the surface.

The creation of large data bases.

The empirical efforts of the past thirty years have resulted in the creation of some
very useful data bases, and hence many new theories can now be tested without a massive
initial investment of effort in data collection.  This has been demonstrated recently in the
outpouring of studies on the issue of pacific democracies (see surveys in Maoz and
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Russett 1993 and Dixon 1994), which were able to quickly employ sophisticated
statistical techniques on existing data sets when this issue became highly salient at the
end of the Cold War.4

I suspect that many of these data sets have been refined to the point where future
theories are unlikely to require significantly different operationalizations, though they
may require variables that have yet to be collected.  For example, it is unlikely that a
totally new project collecting data on the Correlates of War variables over the same set of
cases would produce data that would yield substantially different results than provided by
the original.  Event data are likely to be coded differently in the future (Merritt,
Muncaster and Zinnes 1993) but the concept of event data now seems firmed fixed in the
discipline.  Even if existing data sets are not ultimately appropriate for the tests of new
theories, they provide a starting point and we now have considerable experience in
collecting such data.

Problems of the Statistical Approach
While there have been some notable successes in the statistical study of

international behavior, the approach as a whole is beset by a number of very fundamental
problems.  International behavior is a hostile environment for traditional statistical
techniques in many of its key aspects, and this limits the utility of many conventional
statistical techniques.

Universe versus sample.

The most obvious problem is the statistical study of international behavior is our
inability to sample or experiment when the unit of analysis is the nation.5  There exists
exactly one contemporary international system and the set of nations comprising that
system is sufficiently small and inhomogeneous that there is little reason to sample.
Experimentation is possible only in the highly artificial setting of simulations, and
introducing statistical controls while preserving a reasonable sample size is frequently
problematic.  Most studies use either the nation-year as the unit of analysis or study
relatively rare phenomena such as wars and crises.  Consequently, statistical techniques
originally developed for inference are essentially used descriptively, and the meanings of
“error” and “significance” are different from what they would be in a research design
using randomized samples.6

                                                  

4 The "rational deterrence debate" (see Huth and Russett 1990 and Lebow and Stein 1990), on the other
hand, provides an example of a complete failure of empirical studies to reach closure—due to
disagreements on operationalization and case selection—on an issue of importance to policy.

5 I will be occasionally use the word "nation" to refer to the sovereign political entities studied in global
politics.  The word "state" would usually be more accurate but this can be confused with the quite different
concept of "state" in systems theory; "nation-state" is both awkward and inaccurate, since most
contemporary states are multi-national.  Unless the text is referring to cultural characteristics, the word
"nation" should be assumed to refer to a political, rather than cultural, unit.

6Some leeway exists—for example one can compare a system over time or try to find historically isolated
subsystems such as Hawaii—but most such samples are quite uncontrolled compared to those available to a
researcher in voting behavior or local politics, not to mention medicine and agriculture.
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In addition to their small population of cases, studies of international behavior
usually require, for theoretical reasons, a wide variety of variables.  Most traditional
theory suggests that the determinants of international behavior are multidimensional.
Quantitative researchers have made serious efforts to incorporate the criticisms of their
earlier studies as being too simplified by developing more complicated models, but
encounter problems with a lack of degrees of freedom, particularly when these new
variables are used as controls.  Traditional theory calls for considering large number of
variables even when the number of cases is small; common statistical techniques such as
linear regression simply cannot handle such problems.7

The issue here is less one of statistical interpretation as one of limiting the
effectiveness of the statistical techniques.  Inferential statistics are popular because they
allow an economy of effort.  In predicting an election or measuring an unemployment
rate, statistical techniques can forecast the aggregate behavior of 100-million people on
the basis of questions asked to a sample of 4,000.  This is a remarkable achievement, but
many of those techniques will be less effective in the study of international politics
because the problems are very different.

Lack of a obvious stochastic structure.

When a statistical test is based on a large, randomly sampled universe of cases, the
stochastic structure of the model can usually be approximated after sufficient effort.  In
many cases, this structure is in the normal (Guassian) family of distributions, or
sufficiently close to the normal that the techniques such as Guass-Markov regression are
robust.   This distribution can often being justified theoretical grounds based in issues
such as sampling, the Central Limit Theorem, the multinomial distribution and so forth.

International behavior is problematic in this regard.  First, the number of cases is
sufficiently small that it is often impossible to empirically ascertain the relevant
stochastic distributions with any degree of confidence.  Furthermore the complexity of
the processes under consideration—and the number of unknown parameters—often
makes the distribution difficult to ascertain theoretically.  Finally, the available empirical
evidence argues for distributions that are anything but normal and independently
distributed.  Variables measuring international behavior tend to have distributions with
high temporal and spatial autocorrelation, very high variance due to outliers and
nonrandom missing value problems.  In such cases, the departures from normality are so
great that even robust techniques such as the Gauss-Markov linear model may behave
unpredictably.

                                                  

7 In their widely discussed critique of political science methodology, King, Keohane and Verba (1994)
argue that in such circumstances one should pay attention to what the regression is saying about the
research design, and not try to make inferences when the number of variables exhausts the degrees of
freedom available from the cases.  While this is true in a traditional regression approach, there are other
circumstances—for example where the large number of variables is being used to tap underlying behavioral
dimensions that are substantially fewer in number than the sample size—this may still be justified if done
in a statistically cautious manner.  See American Political Science Review 89,2 (June 1995) for additional
comments.
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Policy substitutability

In an influential 1984 article, Most and Starr discussed the problem of “domain
specific laws” and “foreign policy substitutability”, the fact that nations have a variety of
means to implement foreign policy goals, and that “through time and across space,
similar factors could plausibly be expected to trigger different foreign policy acts” (Most
and Starr 1989,98).  This leads to “many-to-one” and “one-to-many” mapping of
circumstances to behaviors that run counter to the one-to-one mappings of the “nice
laws” found in the natural sciences and presupposed by many statistical studies.  An
average soybean plant tested under a set of controls can be expected to respond
consistently to an application of fertilizer; it is unlikely to grow on one occasion and wilt
on another.  A nation responding to a hostage incident, in contrast, might well respond
with negotiations on one occasion and bombing on another, and the dependent variables
commonly employed in statistical studies will not necessarily be able to differentiate
these two divergent behaviors.

Substitutability is compounded by the lack of numerical measures of the behaviors
of greatest interest to international relations researchers.  Economics probably developed
as the first highly mathematical social science in part because the variables of interest to
economists—inflation, production, employment, interest rates and so forth—can easily be
expressed quantitatively.  Voting behavior and budget studies share this characteristic in
the political realm.  International behavior, in contrast, is usually manifested as
qualitative events or relationships rather than numbers.  Thus while the Correlates of War
project produced a variety of clever numerical measures of warlike behavior, the bottom
line is that international relation theory deals largely with existence of war and not its
exact size or duration (Blainey 1988).  Similarly, traditional theory puts much more
emphasis on the membership and avowed purposes of an alliance than on its size.  Data
on international behavior tends to be nominal or ordinal; it is rarely interval; and it is
frequently dyadic.  Conventional social science statistical techniques are weak in this
area, and in particular most of the techniques borrowed from econometrics assume
interval or ratio data.

The issue here is more than the simple distinction between quantitative and
qualitative data: it is the difference between simple and complex data structures.  Most
statistical methods deal with data encoded either as scalars (single values such as number
of military personnel) or vectors (an ordered set of values, such as population, GNP,
number of borders and number of war involvements during the previous two decades).
Many important political characteristics, in contrast, are best described by complex data
structures.  For example, the phrase “Bretton Woods economic system” is meaningful in
the discourse on international political economy, but cannot be easily described by a
simple number or vector.  Instead, it encompasses a variety of rules, institutions,
distributions of resources, processes for feedback and self-correction that distinguish the
Bretton Woods system from the international economic system of the 1930s and the
system of the 1980s.  As will be discussed extensively in the next chapter, humans are
very facile at dealing with complex of data structures—likely more so than in dealing
with numbers—and hence these are likely to be important in determining political
behavior.
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Overall Assessment of the Statistical Approach.
In contrast to thirty years ago, one can now make a convincing case that some

statistical order exists in international behavior, and that the problems of data collection
and data analysis are not so great as to preclude any application of these techniques.  At
the same time, such studies clearly stretch the limits of those techniques more than is
done by studies of voting behavior or budgets.  By and large, international system
presents a difficult statistical environment: we can’t sample, we can’t experiment, we’ve
got too many independent variables, and our models contain stochastic components with
very non-normal distributions.   In such an environment, results may be obtained, but
they are not obtained easily.

Dynamic Models
60% in dreadnoughts over Germany as long as she adheres to her present program
and two keels for every additional ship laid down by her.

Winston Churchill, 19128

Traditional international relations theory is frequently concerned with the
development of events over time, and therefore it is not surprising that many formal
models explicitly deal with dynamic processes.  The first widely studied formal model of
an international process—the Richardson arms race model (Richardson 1960)—was
dynamic and the contemporary computer-based simulations followed Richardson in this
regard.

Two types of dynamic models are widely used in international relations.
Differential equations, starting with the pioneering work of Richardson, have been used
extensively to model arms races and some other types of international behavior.  The
behavior of some differential equations can be well understood using existing analytical
results from mathematics, and these equations can be used to construct parsimonious
models that capture the general characteristics of the behavior in question.

Large scale computer simulations grew out of the two traditions.  Harold
Guetzkow’s “Inter-nation Simulation” began by using person-machine simulation but
eventually involved into all-machine formulations: the GLOBUS project (Bremer 1987)
is the contemporary descendent of INS.  Jay Forrester’s techniques for simulating social
systems were applied to the international environment in the early 1970s in the Limits to
Growth model produced by the Meadows’ research group; this effort spawned a plethora
of all-machine “global models” in the subsequent decade.  At the core of most all-
machine simulations is a set of finite-difference equations, but the simulations emphasize
complexity and numerical results whereas differential equations emphasize parsimony
and analytical results.  Because a simulation is freed from the constraint of having to be
algebraically tractable, vastly more complicated systems can be modeled and the
simulation literature covers a far richer set of international phenomena as a consequence.

                                                  

8 Churchill (1948,79).  This is the Richardson arms race model, minus the economic burden term, as
policy.  Consistent with theoretical expectations, the policy led to an unstable arms race and war.
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Successes of the Dynamic Approach
Richardson arms race model.

Having languished for forty years in obscurity between its initial creation in 1918
to its publication in the first volume of Journal of Conflict Resolution in 1957, the
Richardson arms race model is now the most widely studied dynamic model in
international relations and, with the possible exception of the incremental budgeting
model, the whole of political science.  It is, for example, the only political science
mathematical model one is likely to encounter in general texts on mathematical modeling
(e.g. Olinick 1978; Luenberger 1979).   Richardson’s equations have all the
characteristics of a good mathematical model: they are simple, provide common sense
results while also revealing some deeper results, and can be incorporated into other
models.

Richardson’s pioneering work spawned an entire genre of arms race models that
flourished in the post-1960 period.  For example, Anderton’s (1985) bibliography on
arms race modeling contains 224 entries and new models are still being proposed, though
arms race modeling is not the active research area it was twenty years ago.  Differential
equations have subsequently been extensively used to model not only arms races but
other types of international behavior such as protracted conflict and event interactions.9

The Richardson model has been extensively tested, with mixed results.  An
assortment of empirical problems exist with the model—the estimates of the coefficients
are often very strange, the parameters estimating the interaction between pairs of nations
are often statistically insignificant due to collinearity problems, and there are numerous
measurement and statistical problems involved in working with the model.10  The
problem of empirically verifying the model is further complicated by the presence of
nuclear weapons and/or alliances in many of the arms races on which the model is being
tested; Richardson’s original two-nation model was not intended to deal with either of
those complicating factors.

But even if the Richardson model is rarely completely correct, it is also rarely
completely wrong.  Most arms races show behavior similar to that predicted by the
Richardson model—they do not, for example, tend to be chaotically irregular or
cyclical—and no models have emerged that provide a consistently better fit to observed
arms race behavior.  The statistical record of the Richardson model is also mixed in part
because it is a known quantity, having been tested on perhaps 50 or more arms races,
whereas most alternatives have been seldom tested.

Complex computer models of global systems.

The publication in the early 1970s of Limits to Growth led to a proliferation of
large-scale computer models of global systems.  These have become a standard research

                                                  

9 Zinnes 1976; Zinnes and Gillespie 1976; and Luterbacher and Ward 1985 provide a variety of examples;
Cioffi-Revilla 1979; Anderton 1985; and Hartley and Sandler 1990 provide extensive bibliographies and
summaries of this literature.

10 See discussions by Majeski and Jones 1981; Schrodt and Ward 1981.
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technique in international relations, and several dozen major models now exist.11  This
simulation work initially incorporated few political components and thoroughly ignored
the extensive earlier international relations simulation work of the 1960s (e.g.
Guetzkow’s INS and Smoker’s IPS) but more recently global models have incorporated
significant political and political-economic factors.

These models have in all likelihood had greater impact on policy—and certainly on
the popular perceptions—than any other mathematical models of international behavior.
Much of the early simulation work was done at the behest of the United States
Department of Defense; the initial all-computer work of the 1970s was funded by NGOs
such as the Club of Rome and the Ford Foundation that were explicitly interested in using
the models for global planning, and by the 1980s a number of simulations had been
developed for governments.12  These simulations were seen as the international
equivalent of large-scale macroeconomic models, and were developed in the hope of
providing the same sort of guidance in international affairs that macroeconomic models
provided in national fiscal planning.

Freed from the necessity of analytical tractability, global simulations incorporate a
far more complex set of assumptions than differential equations.13  Differential equation
models of international behavior have seldom gone far from their roots in Richardson,
whereas simulations have gone well beyond the original models of INS or Limits to
Growth in terms of ideological assumptions, relevant variables, and levels of aggregation.

The complexity of simulations and their emphasis on long range forecasting makes
them very difficult to test, and as such they do not have a statistical track record
comparable to that of the Richardson model.  The models are more commonly used as
scenario generators to ask “what if?” questions and generate sets of behaviors and
interactions, which might not have been anticipated by researchers.

Problems of the Dynamic Approach
Chaos

Until recently, the implicit assumption underlying dynamic models in the physical
sciences was the clock-work, Laplacian universe: a closed deterministic system where the
knowledge of the parameters and initial values would forever determine the values of the
variables.  While it was recognized that problems of measurement and parameter

                                                  

11 Reviews are found in Deutsch et al. 1977; Guetzkow and Valdez 1981; Hughes 1984, 1993; Ward 1985;
and Bremer 1987.

12 For example Luterbacher's SIMPEST was developed for Switzerland; Hughes did extensive government
consulting with IFS, and the Federal Republic of Germany financed the ten-year GLOBUS effort.

13 The "coop model" of territorial aggregation, where the future status of territories are determined by the
status of adjacent territories (Schelling 1978,chapter 4; Schrodt 1981a, Cusack and Stoll 1990) is an
exception to tendency of simulations to be complex: this type of model contains a small number of
parameters and the effects of those parameters can therefore be systematically studied and conclusions
obtained about the general behavior of the model.  Under auspices of the Santa Fe Institute (Langton 1989;
Langton et al 1992) there is now considerable research dealing using simulations that employ large
numbers of autonomous agents acting under simple rules, though to date few of these have involved
political behavior.
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estimation would keep this ideal system beyond the grasp of researchers, one could
approach it with arbitrarily high precision in a sufficiently well-understood system.  In
the astrophysical system, of example, the Voyager 2 spacecraft swept past the planet
Uranus only 60 seconds off schedule after a journey of some eight years and 3.2-billion
kilometers.

The Laplacian ideal was implicitly adopted by most of the dynamic models of
international behavior, particularly the simulation research that came out of the
engineering and operations research tradition (e.g. Limits to Growth).  While
astrophysical precision was certainly beyond reach, two characteristics of the
international system seemed to promise that dynamic models would provide reasonable
statistical approximations.  First, social systems were assumed to be largely homeostatic,
with feedback mechanisms that would limit large deviations in behavior and keep the
system near a predictable path14.  Second, because aggregate behavior was being
modeled, the statistical errors could be fairly well understood.  Contrary to popular belief,
statistical errors do not actually “cancel out”—in coin flipping the sequence
HHHHHHHHHH has precisely the same 1/1024 probability as the sequence
HTHTHTHTHT—but the characteristics of large samples of random variables are known
and tend to exhibit tractable features such as the normal distribution.  The dynamic
modeling community implicitly assumed that these two conditions would insure a level
of behavioral regularity that could be usefully approximated by deterministic systems.
This assumption was not confined to models of international behavior but permeated
other models of social systems, in particular macroeconomic models.

During the 1970s, two cracks appeared in this elegant edifice, which, by the late
1980s, had expanded into the field now called “chaos theory”.15  In biology, Robert May
(1976) observed that the finite-difference form of the well-known logistic equation (the
most common model of population growth where resources are constrained by crowding)

xt+1 = r xt (1 - 
xt

K
 )

exhibited increasingly random-looking behavior for the values of r in the range 3 < r < 4
despite the fact that the equation is smooth and self-correcting for 1 < r < 3.  Figure 1

                                                  

14 The classical homeostatic model of social behavior is the basic market mechanism in microeconomics.
If supply exceeds demand, prices fall, which makes producers less interested in providing an item and
consumers more likely to purchase it.  If demand exceeds supply, prices rise, causing additional suppliers to
enter the market and consumers to be less inclined to buy.  This negative feedback causes the behavior to
be self-regulating and relatively stable so long as the environment remains constant.  The concept of
homeostatic systems was important in early dynamic models due to the influence of the "General Systems
Theory" approach of Ludwig von Bertalanffy, itself based in Norbert Weiner's modeling of "cybernetic"
self-regulating systems.  General Systems Theory was seen in the 1950s as providing the mathematical
tools that would allow social and biological systems to be modeled with the same rigor and precision that
the differential calculus had provided for physical systems; this strongly influenced early behavioralists
such as Boulding, Deutsch, Kaplan and Easton (see Dougherty and Pfaltzgraff 1981, chapter 4).

15Gleick (1987) provides a good non-technical introduction; Casti (1989) a short mathematical treatment;
Devaney (1986) a book-length mathematical treatment; and Kellert (1993) discusses chaos from the
perspective of a philosopher of science.  Saperstein and Mayer-Kress (1988) applies chaos theory to an
arms race problem; Richards (1993) to the issue of power concentration.
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shows both the smooth and chaotic behaviors of the model for K=100 and two values of
r.
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Figure 2.1.  Smooth and Chaotic Behavior in the Logistic Model

Chaotic models are also extremely sensitive to initial conditions: arbitrarily small
changes in initial values lead to arbitrarily large deviations in later behavior.

Chaotic behavior turns out to be almost the rule rather than the exception in
dynamic systems.  The essence of these results are summarized by Casti:

A deterministic mechanism can give rise to random-looking behavior, even when
the measurements are exact!  Further … it’s perfectly possible for a process
formulated in terms of stochastic processes to be mathematically identical to a
totally deterministic process.(Casti 1989,230)

More generally, researchers have begun to recognize that many dynamic processes
will have the characteristic noted by Henri Poincaré:

A very small cause which escapes our notice determines a considerable effect that
we cannot fail to see and then we say that  the effect is due to chance. … it may
happen that small differences in the initial conditions produce very greater ones in
the final phenomena.  A small error in the former will produce an enormous error
in the latter.  Prediction becomes impossible…(Quoted in Gleick 1987,321)

In contrast to the world described by Laplace, seemingly random behavior over
long time scales is the norm rather than the exception.  This occurs even in systems that
are deterministic and homeostatic; in fact the nonlinear self-correcting aspects of the
equation are those producing chaotic behavior.

The conditions for chaotic behavior are probably common in international politics.
The importance of the logistic equation itself provides one source of chaos, but more
generally even the simplest nonlinear finite difference equation system—one containing
quadratic terms—can display chaotic behavior.  For example, one of the most widely
studied chaotic systems, the Henon attractor, is generated by
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xt+1 = 1 + yt - ax2
t+1

yt+1 = bxt           

This is simply a pair of linear equations with a quadratic damping element on
x—hardly a convoluted model.  Casti (1989) provides an assortment of additional
examples for economic, population and biological models.

Lagged responses also seem to create chaos, though in the elementary chaos
literature this issue is studied less frequently than nonlinearity because physical systems
rarely exhibit the long lags found in social systems.  In Schrodt (1981b, 1983) I
numerically simulated the logistic with a lagged component and the behavior was similar
in many respects to that encountered in chaotic models.  Lags are probably a more
important determinant of chaos in international behavior than all but the most simple (e.g.
quadratic) nonlinearities; most international behavior occurs in systems of the form xt =
F(xt-∂) where ∂ is a random variable.

A model capable of chaotic behavior does not exhibit chaos for all parameter
combinations and the onset of chaos is abrupt—an arbitrarily small change in an
appropriate parameter value can change a model from smooth or periodic behavior to
chaotic behavior.  Some systems go through a series of chaotic and stable phases as their
parameters change, so neither regularity nor chaos for one set of parameters necessarily
implies others will show the same behavior.

As a consequence, dynamic models are caught on the horns of a dilemma.  Linear
systems do not show chaotic behavior, but they also produce unbounded values when
they are unstable and have a very limited repertoire of behavior.  The simplest feedback
equation that can produce periods of exponential growth but still guarantee bounded
behavior is nonlinear—the logistic model—and the finite-difference version of this model
can produce chaotic behavior.  Since international processes appear largely self-limiting,
feedback is all but essential in any credible model.  One thus must choose between the
unrealistic approximations of linear models or allow the possibility of chaos16.

This has at least three implications for dynamic models of international politics.
First, chaos probably lurks in most of the existing models of international
behavior—chaos may not be evident in published parameter combinations, but it is
unrealistic to assume that chaotic components are absent.  That, in turn, means that the
long-term predictions of those models are suspect even if the deterministic specification
of the model is itself correct.  Forecasts for the global meteorological system—a largely
closed system with fixed parameters and well-understood deterministic micro-level
principles—become unpredictable after even moderate time periods have elapsed.  It
seems unduly optimistic to expect that an international system that includes elements of

                                                  

16 This distinction accounts for my expectation that chaos theory—despite its faddish character—has
important implications for international relations modeling that catastrophe theory—the previous
mathematical fad—did not.  The popular catastrophe theory models required systems that were homeostatic
and minimized a quartic (cusp catastrophe) or hexadic (butterfly catastrophe) function and used continuous
time and contained two or more independent, real-valued parameters.  The "general" topological results of
René Thom basically applied only to mathematical abstractions, and only rarely to empirically realizable
systems.  Chaos theory, in contrast, applies to models that have been in common use for decades and have
realistic features such as quadratic feedback, discrete time, and interdependent parameters.
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human choice and poorly understood micro-level principles will be predictable in the
long term, even by statistical criteria of accuracy.

Second, the stochastic character of observed behavior is not necessarily generated
by the familiar, well-behaved (i.e. uniformly or normally distributed) aggregate processes
that are assumed by most common statistical techniques.  This would argue for
considerably greater care and creativity in dealing with estimation and stochastic
modeling.

Third, the sensitivity to initial conditions is a long-term problem, not a short-term
problem.  The divergence of two chaotic trajectories is gradual, not instantaneous.  This
argues, however, for determining the behavior of a system on the basis of short-term
properties, rather than assuming that the global properties of the system will capture the
“average behavior”.  If the underlying deterministic equation of a chaotic process can be
ascertained, short-term transitions of the system will be accurately described and usually
parameter estimation is possible.  In particular, many chaotic systems exhibit statistical
regularities called “attractors” that could be usefully studied.

Ordinal time

The concept of “time” is different in dynamic models and in traditional
international relations theory.  In a differential equation, time is a precise variable capable
of infinitesimal division, and the processes modeled are tightly linked to clock time.  The
dt of dx/dt is a real number, not a random variable, and attempts to make it a random
variable create intractable analytical problems.  While some ingenious ways have been
suggested for getting around this problem (e.g. Allan 1980; Zinnes 1983), they do not
alter the basic problem that differential and difference equations, and most simulations,
assume regular time.

In contrast, time in international behavior is largely ordinal: events happen in a
sequence, but the timing within that sequence is very loose.  Whether a response to a
diplomatic communication takes a day or two days is rarely of consequence provided
nothing else of importance happens in the meantime.  International affairs sometimes
exhibits time delays lasting for years—for example, the SALT negotiations, the Law of
the Sea negotiations, the withdrawal of the USA from Vietnam and any case presented to
the International Court of Justice—without those delays appreciably affecting the
eventual outcome.  International actors are frequently both immortal and very, very
patient, and hence the timing of their activity is largely unpredictable except in issues
such as budgets and population growth.  Statistical models can deal with this problem
using stochastic processes such as the Poisson (e.g. King 1989a), and rational choice
models by looking at sequential decision-making (e.g. Powell 1990, Morrow 1994) but it
is very difficult in the dynamic modeling framework.

Lack of explicit rationality.

Most dynamic models are arational (as distinct from irrational) — they lack an
explicit process of reasoning.  It is possible to create rational dynamic models (e.g.
Gillespie et al 1976) and it is also possible to models invoking rational decision-making
from which one can deduce a simpler dynamic model (e.g. Abelson 1963) but usually this
is not done.  Arationality obviously weakens the a priori case for the models: foreign
policy decisions are made by individuals who are at least processing information, if not
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acting rationally, and ideally theories of political behavior should incorporate cognitive
processes.

Rational choice models, in contrast, have made considerable efforts in recent years
to incorporate dynamic elements by using sequential approaches.  Most existing dynamic
models avoid cognition because the analysis and parameter estimation of dynamic
rational models is at best difficult and at worst impossible due to problems of
underidentification.  Instead, the dynamic modeling tradition places cognition in a black
box and tries to fine-tune the box without looking inside.  This allows models to be
specified and tested, but limits one to predicting outcomes rather than processes.

The absence of an explicit cognitive model may contribute to the lack of closure in
the dynamic modeling literature:  There is one, and only one, widely accepted
model—Richardson’s—and even it is somewhat controversial.  Differential equation
models occur only sporadically in models of behavior other than arms races, and for
example there is no dynamic model for the outbreak of war comparable to the arms race
model.  Simulations vary widely in their assumptions as well as in their parameter
estimates (see Hughes 1984, 1985), and one can find a plausible simulation to generate
virtually any scenario.  While efforts have been made to find standard “modules” for
simulations, these have had little success.  The lack of closure contrasts to the rational
modeling tradition, where a wide variety of behaviors are modeled with a small set of
common assumptions.

Difficulties of testing.

Dynamic models are difficult to test.  First, there are problems in finding data on
processes that remained consistent over a sufficiently long period of time that parameter
estimation can be done.  Data on international behavior tend to be collected
annually—event data are the exception—yet most processes are affected by changes in
governments and policies, so it is unreasonable to assume that the parameters of the
model would be constant over a period longer than a couple of decades.  Simulations
involve a very large number of parameters and hence are underidentified even when long
time series are available; many of their parameters must be set a priori.  When these
parameters involve obscure or poorly-understood relationships—for example the linkage
between resource use and environmental degradation—a priori estimates may be
insufficient.

The disjunction between the interval measures used in mathematics and the
nominal nature of international behavior poses additional difficulties.  Equations deal
with quantities, whereas international behavior is usually conceptualized in terms of
events or relations.  Thresholds and qualitative characteristics such as stability may
partially link the interval and nominal measures but these are usually at best
approximations.

Overall Assessment of the Dynamic Approach
International behavior is unquestionably dynamic: events and processes occur over

time and few if any traditional theories would argue otherwise.  The question is how best
to model a dynamic process and how far those tools can be pushed.

In physics, the invention of the differential calculus by Newton and Leibniz
provided a powerful tool for dealing with dynamic behavior.  Physical processes are
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highly time dependent and the differential equation proved to be an ideal modeling
technique for many such processes.  To the extent that biological and economic activity is
also dependent on such physical processes, differential equations (and their computerized
successors) have also proven useful in some domains.

Applying these techniques to international behavior, however, can be problematic:
time is only ordinal, variables are frequently nominal, and data and technical constraints
complicate empirical estimation.  As the implications of chaotic behavior in nonlinear
dynamic systems become more fully appreciated, the ability of these models to make
long-term predictions is seriously called into question, even when the underlying process
is deterministic and fully understood, conditions rarely obtained for most international
phenomena.

Differential equations are clearly useful as approximations in some problems, as
indicated by the popular success of the Richardson model and global simulations, but
whether they will be successful in most problems is quite a different issue.  There are a
few clear success stories, but whether those necessarily foreshadow further success along
the same lines is questionable.

Rational Choice Models
I suspect that [Herbert Simon] would have said that a discipline such as economics
that finds ordinary behavior surprising probably ought to spend a bit more time
looking a ordinary behavior and a bit less time contemplating its theories.

James G. March

A gang of Aleutian Islanders slushing about in the wrack and surf with rakes and
magical incantations for the capture of shell-fish are held, in point of taxonomic
reality, to be engaged in a feat of hedonistic equilibration in rent, wages and
interest.

Thorstein Veblin

The “rational choice” approach utilizes models originally developed in economics
to explain individual and microeconomic behavior.  It first entered international relations
in the 1950s and 1960s through RAND Corporation work applying game theory to
international conflict, then expanded dramatically in domestic political science during the
1970s: Riker and Ordeshook (1973), Frohlich and Oppenheimer (1978), Abrams (1980)
and Ordeshook (1986, 1989) provide book-length introductions.  These models are
characterized by the not-unreasonable assumption that political processes are the result of
individual decisions, and that those decisions are at least partially determined by some
form of “rational” calculation involving preferences and constraints, usually expressed in
terms of expected utility.

The rational choice models applied to international behavior can be categorized
into three general types: game theory, expected utility, and economic competition and
maximization models.

Game Theory.

The genesis of game theory was in the analytical problems of World War II and it
has been used extensively in the study of military problems in international relations.
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Military problems tend to be zero-sum and two-actor, for which complete theoretical
results exist; cooperative and N-person games have been extensively applied to the
problem of negotiation (e.g. arms control: Saaty,1968) though with less analytical success
due to the ambiguity of the results in this sub-field.  There are a wide variety of books on
game theory, most of which provide examples of military/diplomatic applications: Luce
and Raiffa (1957) is still an excellent survey; Schelling (1960) specifically addresses the
conflict issues;  Hamburger (1979), Davis (1983), Shubik (1985), Myerson (1991) and
Morrow (1994) provide good text-level introductions.   Brewer and Shubik (1979),
Brams and Kilgour (1988) and O’Neill (1994) provide surveys of game theory
emphasizing its role in defense policy-making.  While the original applications tends to
focus on simple one-play, complete information games, during the past decade a variety
of work has been done with combinations of non-cooperative, sequential, incomplete
information and N-person games, particularly in the context of alliances and arms
race/control issues: Ordeshook (1989), Downs and Rocke (1990), Niou, Ordeshook and
Rose (1989) and Powell (1990) are examples of these efforts.

Expected utility

The expected utility model, which is based on the assumption that individual
decision-making involves the calculation of expected loss or gain across a stochastic set
of outcomes, is the dominant model of human decision-making in microeconomics, and
has been extensively applied to the study of voting behavior.  Expected utility is central
to many game theoretic analyses but can also be used to construct models of independent
choice when the probabilities of outcomes are taken as given or determined by
environmental factors.  The most notable work in this field is that of Bueno de Mesquita
(1981, 1985) and his students; Bueno de Mesquita (1989) provides a survey of this
literature.

Economic competition and maximization

The possible convergence between the competition of the marketplace and the
competition among nations has been a theme of international relations theory for
centuries (see Parkinson 1977) and it is not surprising that theories of economic
competition should be applied to international affairs.  The bulk of this work has been
concerned with arms races and two-nation competition.  Intriligator (1971) provides a
survey of the techniques, and Intriligator has been one of the more prolific scholars in
applying the methods (e.g. Intriligator 1964; Brito and Intriligator 1974; Intriligator and
Brito 1984); Busch (1970) and McGuire (1965) also take this approach.

Successes of the Rational Approach
The introduction of concepts.

The most important contributions of the rational models have been conceptual
rather than empirical.  Formal concepts such as “rational”, “zero-sum”, “game”,
“strategy”, “utility”, “expected utility”, “Prisoners’ Dilemma”, “risk adverse” have
proven very useful in characterizing certain international situations.  In many cases,
however, the concepts are introduced without the formal mathematics: Schelling (1960),
Rapoport (1974), Snyder and Diesing (1977), and Jervis, Lebow and Stein (1985) provide
examples of this.  These works use game theoretic concepts extensively but employ only
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a fraction of the mathematical content of works of comparable level in microeconomics.
A recent example is Niou and Ordeshook’s (1994) assertion that coordination in
international affairs—the subject of endless discussion in the “realist-neoliberal debate”
of traditional IR scholarship—could be parsimoniously explained by simple equilibrium
concepts.  This article makes very effective use of game theoretic concepts, but requires
only a minimum of algebra.

The early results of game theory also provided two related results that fixed a limit
on predictability in international relations: multiple equilibria and mixed strategy
solutions.  Both concepts provided a formal basis for the observation that international
events are often unpredictable, and involve guesses, hedging, feints and so forth.  The
game theoretic results show that such behaviors are consistent with assumptions of
rational behavior, and that in many circumstances predictable behavior would be
irrational.

The Prisoners’ Dilemma/Chicken analysis of war initiation and arms races.

The single most widely analyzed game in international relations is Prisoners’
Dilemma and its variants, particularly Chicken.  This mixed-motive game appears to have
wide applications in international politics, and is especially important in the analysis of
nuclear deterrence and military affairs.  The existence of the dilemma is simple to
demonstrate, a wide literature on solutions exists, and Prisoners’ Dilemma is the formal
model most likely to be used in an introductory international relations course.

Axelrod (1984) used the iterated Prisoners’ Dilemma to show that tit-for-tat
behaviors are selected for in evolutionary situations.  Axelrod’s results show why the
world is not, for the most part, a war of all against all, and why life is not nasty, brutish
and short for most people most of the time.  This is one possible solution to the problem
of explaining the high levels of order found in the anarchic conditions of the international
system.

The game theoretic analysis of deterrence.

The problem of nuclear deterrence has been extensively studied using the principles
of game theory, and game theory has probably contributed substantially to our
understanding of that problem.17  The nuclear deterrence problem has thus far largely
been a two-actor game, it is repeated, and it is sufficiently high on the foreign policy
agenda that the unitary actor assumption is reasonable.  The failure of nuclear deterrence
is also a counter-factual situation, and hence history provides less guidance than it does in
other foreign policy decisions, opening a niche for the hypothetical analyses of game
theory.

Problems with the Rational Choice Approach
While the rational choice approach can make some  contributions to our

understanding of international behavior, I will argue that it is, for the most part,

                                                  

17 O'Neill (1994) presents considerable evidence that the influence of game theory in developing nuclear
strategy was much more limited than often assumed.  Most of the game theoretic analysis followed, rather
than preceded, the development of the strategic theories.



32 Patterns, Rules and Learning

unsuitable as the primary model for the study of international politics, whatever its merits
in studying microeconomic behavior.18

Rational choice presents an attractive avenue for modeling and theoretical
development because it is a well-developed theory of human decision-making.  While
most elements of the theory have been borrowed from economics, that discipline is closer
to political science than agricultural statistics, meteorology or electrical engineering, to
list some of the sources drawn upon by the statistical and dynamic approaches.19

Economics and political science are the two social sciences dealing with large scale
formalized human interaction; psychology deals with individuals; sociology with
informal groups; and anthropology with everything.

If one could encompass political behavior and economic behavior—behaviors
differentiated in natural language—using a single theory or related set of theories, this
alone would be ample justification for accepting a few inevitable inaccuracies introduced
in the transition.  All models are inaccurate, so it may be better to deal with modifications
of an existing theory than to develop a new one.

I contend, however, that we need a separate theory to account for political behavior.
The rationale for this assertion is more complicated than the criticisms of the statistical
and dynamic approaches and consists of two parts:

• The economics-based approach—particularly revealed preferences and expected
utility decision-making (EUDM)—is empirically inappropriate in the
international relations environment;

• Political behavior involves fundamentally different calculations than economic
behavior—there are reasons why the two are traditionally differentiated—and as a
consequence they require different models of decision-making.

These two assertions are virtually independent.  There are an assortment of
economics-based approaches (see Frey 1983) that reject EUDM but still work within a
microeconomic framework where behavior is primarily determined by preferences and
constraints, so while EUDM is almost universally assumed in existing rational choice
models, one could work without it.

Assertion (2), in contrast, attacks the generalization of the economics framework to
any political problems: it is as relevant to decisions about Congressional voting as to

                                                  

18 While the arguments I present here were developed independently (see Schrodt 1989b), many are
similar to argument presented at length in Green and Shapiro (1994).  Green and Shapiro consider only
applications of rational choice to domestic politics but many of their criticisms, particularly on the
scientific status of the field, apply equally to international politics.  Two differences might be noted,
however.  First, domestic applications of rational choice usually apply in situations more institutionally
structured (e.g. elections, Congress, interest group participation) than those found in international politics.
Second, domestic rational choice is usually applied to situations where the individual is the decision-
making unit, whereas in international politics that unit is almost always an organization, thus requiring the
imposition of an additional unitary actor assumption.  Neither difference makes the rational choice
approach any more likely to apply in the international realm than in the situations discussed by Green and
Shapiro.

19For example, three Nobel Prizes in Economics have been awarded to individuals who have made very
substantial theoretical contributions in political science: Herbert Simon, Kenneth Arrow and James
Buchanan.



Formal Models of International Behavior 33

decisions about nuclear war.  This argument follows paths that have been pursued for
decades by Simon, March and others20, and consequently is central to the larger debates
in political science about the relevance of the “positive political theory” approach.

Empirical Problems with the Rational Choice Approach
A mathematician may say anything he pleases, but a physicist must be partially
sane.

Josiah Willard Gibbs

Expected utility decision-making

The assumption of expected utility maximization, while apparently obvious and
common-sensical, has fared poorly in empirical tests.  The earliest challenges were the
Allais paradox (Allais 1953), which dealt with the valuation of certain versus probable
events, and the Ellsburg paradox (Ellsberg 1961), which dealt with the assessment of
unknown probabilities; the full-scale assault on EUDM came in the 1980s with the work
of Kahneman, Tversky, Slovic and others (see Kahneman, Slovic and Tversky 1982;
Hogarth and Reder 1987; Thaler 1991).  While there is considerable debate concerning
the psychological processes that account for these results, they have been replicated in
thousands of experiments, no alternative experimental protocol has been developed that
refutes those challenges and thus their empirical validity is seldom seriously questioned.

Particularly relevant to models of international politics are an assortment of studies
(usually from the domains of diagnostic medicine, occupational risk or environmental
hazards) that deal with threats to human life: in these domains the predictions of EUDM
fail with great consistency.  These violations of statistical decision-making principles
occur even when the decision-makers are trained experts in statistical methodology
and/or experienced at making decisions in situations of uncertainty (e.g. business
executives, medical personnel, psychologists and judges).

These studies bode ill for EUDM as a model for actual decision-making,
particularly in the frequently considered domain of crises.  Consider the situation of
decision-makers facing a potentially disastrous and unprecedented situation such as
nuclear war.  The lives of soldiers and possibly an entire nation are at risk.  The decision-
makers are engulfed in the “fog of war”; information is missing, distorted and created in
part through deliberate deception by the enemy.  They are short of sleep, emotionally
keyed up, and probably influenced by psychoactive chemicals ranging from caffeine and

                                                  

20 See Simon (1985) and Cyert and March (1963).  In reading Cyert and March —now over three decades
old—one is struck by the fact that the case for microeconomic rationality in organizations was quite
thoroughly destroyed in the realm of economic behavior, and yet the same arguments emerge, as models of
political behavior, in the 1970s onward.  Cyert and March noted in 1963

[These] debates … seem to have remarkable powers of reincarnation.  They neither die nor fade away with
much permanence.  Instead, with each publication of new empirical evidence or a new theoretical treatise, the
argument is resumed.  We will leave the more esoteric features of this remarkable immortality to students of the
sociology of knowledge and the metaphysics of wisdom" (pg. 15).

It is as if each generation of social science modelers is newly seduced by the mathematical simplicity of the
rational choice assumptions, unaware that is a siren song luring them onto the rocks of empirical
irrelevance.
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nicotine to mood-alerting prescription drugs.  They are concerned about their future in the
organization and possibly their place in history; they probably don’t know Bayes
Theorem from a Banach space.  Under such circumstances, is there any reason to believe
that these individuals will defy all norms of human behavior and engage in expected
value maximization?  Probably not.

Unfortunately, the EUDM assumption tends to be central and critical for most
models of international behavior using the rational approach.  While these EUDM
formulations are sometimes mathematically elegant, it seems most unlikely that they
accurately describe human behavior in the circumstances being modeled.  Unless other
factors in the international system selects for EUDM in organizations even as it is resisted
in individuals—and I will argue against this below—EUDM is weak ground upon which
to build a theory.

In economics, these challenges to the fundamental assumptions about the nature of
rationality under uncertainty have been taken quite seriously.  For example, the Hogarth
and Reder (1987) volume resulted from a conference of over sixty scholars, including
three Nobel Prize winners, addressing this issue.  In contrast, the formal modeling
community in political science has tended to dismiss this research as irrelevant.21  For
example, Ordeshook’s otherwise excellent Game Theory and Political Theory associates
the Allais paradox with the entirely unrelated paradox of not voting (Ordeshook 1986,49)
and does even mention the Ellsburg paradox or the Kahneman et al opus, despite the
central position of expected value decision making in game theory.  Green and Shapiro
express concern that

The appeal of rational choice in fields like political science, law, and sociology
derives, in part, from its reputation for great success in [economics].  Just how well
rational actor hypotheses hold up in economics when subjected to empirical
scrutiny is debatable... It may be that we are witnessing a curious phenomenon in
which rational choice theories are fortified in every discipline by reference to their
alleged successes elsewhere. (Green and Shapiro 1994,179-180)

While it is easy to find instances where a science is advanced by postulating
processes that remain unconfirmed for a considerable period of time—for example wide-
spread acceptance of Mendel’s concept of the gene preceded by half a century Crick and
Watson’s elucidation of its chemical basis—it is much more difficult to find examples
where a science has been advanced by holding on to assumptions that have been repeated
disconfirmed.

I am not suggesting the EUDM is always irrelevant.  In situations where
probabilities are fairly well known, where the risks are limited, where there is ample time
to consider alternatives in a dispassionate fashion (quite possibly informed by operations
research explicitly employing EUDM models) and where a situation is repeated, EUDM
may in fact be appropriate.  Such circumstances obviously exist in international politics:
arms control monitoring agreements come to mind; protracted conventional deterrence

                                                  

21By the late 1980s a number of researchers in economics, aware of the problems of microeconomic
rationality in formal models, began to experiment with computational alternatives involving limits on
information, sub-rationality, memory effects and organizational constraints.  I have more than once been in
the curious position of being attacked by political scientists for rejecting microeconomic rationality, and
then having this choice defended by research economists.
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systems such as Israel and Syria may provide another example.  But for the reasons
mentioned, it seems to be a very inappropriate model for situations of crisis, and certainly
inappropriate for counter-factual situations such as breakdowns of nuclear deterrence.

Lack of empirical validation

One of the fundamental tenets of the positive economic school is that empirically
false assumptions are legitimate provided they lead to empirically correct results

22
.

Given the extensive experimental evidence indicating that EUDM is not an accurate
description of human decision behavior, one might expect substantial efforts would be
undertaken to validate their deductions.

Testing is not, however, a distinguishing characteristic of the rational choice
literature—of the three categories of formal models, rational choice models are the least-
frequently subjected to empirical assessment.  While this situation has certainly improved
substantially over the past few years—most notably with the extensive empirical work of
Bueno de Mesquita and his co-authors23—articles in the rational choice literature remain
all to frequently characterized by a surfeit of indifference curves and superscripts and a
dearth of estimated coefficients.24  This absence of empirical testing is due in part to the
frequent game theoretic focus on counterfactual situations such as the breakdown of
nuclear deterrence—I have no interest in living in a world where such models can be
tested!—but for example, none of the five international relations models in Ordeshook
(1989) deal with counterfactuals, but none are subjected to empirical tests.  As Leontief
(1982) and Simon (1985) have pointed out with respect to economics, and Green and
Shapiro (1994) note with respect to study of domestic politics, an institutionalized
disregard for the empirical world has been a general problem for modelers using rational
choice assumptions.

This problem extends beyond the research preferences of the rational choice
paradigm to the fact that the basic model is in many ways non-falsifiable: preferences
effectively provide infinite degrees of freedom and thus for any behavior, one can
construct a set of preferences to predict that behavior.  As with Alice’s Restaurant, you
can get anything you want with indifference curves.  The Richardson model, in contrast,
will only fit certain patterns of arms expenditures (e.g. it fits poorly the pattern of defense

                                                  

22 Friedman (1953) provides the most influential exposition of this principle; most early proponents of the
rational choice approach accepted it, though in the past decade it has been treated less favorably.  Moe
(1979) and Green and Shapiro (1994,30-32) provide reviews of many of these arguments.  My own view is
that Friedman's principle played a role in the development of mathematical social science analogous to that
played by the Piltdown fossils in the development of a theory of human evolution, and should be treated
accordingly.

23 See for example Bueno de Mesquita 1981 1985, 1989; Bueno de Mesquita, Newman and Rabushka
1985; Bueno de Mesquita and Lalman 1992.  International Studies Quarterly 38,3 (September 1994)
contains three articles testing models derived from rational choice premises; Fearon (1994) takes on the
difficult task of testing a sequential bargaining model.  Compared to a few years ago, this is definitely
progress!

24 International Studies Quarterly 37,1 (March 1993) and Journal of Conflict Resolution 37,3 (September
1993) provide several examples.  This is not progress...
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expenditures by the USA and USSR for the post WWII period).  The ability to explain
everything explains nothing: such models are tautologies.25

At the individual level, Simon observes

In principle, it should be possible to obtain independent evidence about the nature
and shape of any particular person’s utility function, as well as evidence of the
probabilities that person assigns to events.  In practice, this is completely infeasible.
In fact, when such experiments have been run, it has generally been found that
human subjects do not possess consistent utility functions or probability
assignments. (Simon 1985:296)

For example, Tversky and Kahneman (1987,69) note a phenomenon which they
call the “violation of invariance”: “preferences” revealed in one situation are not
necessarily going to apply in another which is mathematically equivalent but either
phrased differently or placed in a different context.

The international system is an even more hostile environment for obtaining
information about preferences than is the individual.  In an election or a consumer choice
situation, revealed preference is a rather innocuous assumption: information can be
obtained when voters vote or consumers make purchases.   In contrast, the potential scope
of international actions is so complex, and the pace of international decision-making so
slow, that only a fraction of preferences of decision-makers are ever expressed in
revealed preferences.  In the absence of such information, it is impossible to answer
“what if” questions with any certainty.

Achen (1995) argues that these features of international environment render the
assumption of rationality in foreign policy decision-making irrelevant:

The crucial point is that in foreign policy decision-making, alternatives appear once
and once only. Even when they have the same name, they remain distinct: To do
nothing in Berlin in 1958 is not the same as doing nothing in Berlin in 1961, since
they produce different states of the world, and that by definition makes them
distinct alternatives. ...

The conclusion, then, is that attention to “the unitary rational actor hypothesis” is
misdirected.  One cannot test a tautology.  Effort should go instead toward finding
variables and plausible functional forms which predict state behavior. (Achen 1995,
8 and 15; quoted with permission)

Consistent with Achen’s observation, the empirical work of Bueno de Mesquita can
be characterized as a test of variables and functional forms that are consistent with, and
clearly inspired by, rational choice theories, but they cannot be considered direct tests of
those theories.26  The statistical forms tested do not uniquely follow from rational choice
assumptions and are often similar to tests derived directly from realist theories (for
example the numerous studies based on the Correlates of War dataset) without the
intermediating assumptions of EUDM.  While the rational choice approach may have
                                                  

25 See also Green and Shapiro 1994,34-38.

26 These tests, while admirable in their extent, are not without critics, e.g. Majeski and Sylvan (1984).  In
addition, Bueno de Mesquita's rational-choice-based predictions in U.S. News and World Report (3 May
1982, pg. 30) have not stood the test of time particularly well.
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heuristic value for some researchers, it is clearly possible to construct and empirically
assess formal models without it.27

A related problem in the empirical assessment of rational choice rests in the amount
of information provided by the model compared to that provided by the modeler.
Consider, for example, this matrix from Snyder and Deising’s (1977) game theoretic
analysis of the Berlin blockade crisis:

Compromise on currency 
reform and on control of 
Germany

Maintain rights in or access to
West Berlin.  Proceed with 

unification of West
Germany

Loss of West Berlin; or fighting
possibly leading to 

World War III

Give up plans for unified West 
Germany.  Humiliation, but

stay in West Berlin

"Return to Potsdam."
Resumption of reparations;
West stays in Berlin

Gain West Berlin without
fighting; or fighting possibly
leading to World War III

A hostile unified West
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Figure 2.2.  The Berlin Decision

Once the Berlin decision has been stated in this fashion, a solution can be derived
using game theoretic techniques.  Yet from the standpoint of prediction, the most difficult
problem is not the solution of the game matrix but the construction of that matrix—how
were the complex political outcomes in the cells generated?

The specification of most game theoretic models of international behavior
presupposes the solution of a very difficult prediction problem involving outcomes.  In
this respect, international relations differs significantly from most microeconomic
decisions and many domestic political decisions, where the space of outcomes is
institutionally defined.  In international politics, understanding how the players construct
the game is at least as important as knowing how they will play the game they have
constructed, and the rational choice model provides us with almost no guidance on this
issue.

                                                  

27 For example, only 3 of the 21 empirical studies in Midlarsky (1989) and Wayman and Diehl (1994)
employ EUDM (Bueno de Mesquita; Intriligator and Brito; Bueno de Mesquita and Lalman)
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Recognizing this problem, in recent years some rational choice modelers have
employed models of signaling and incomplete information that explicitly examine the
processes by which players might acquire information about each others’ preferences and
payoffs (see Morrow 1994, Chapter 8; Ordeshook 1989, Morrow 1989; Powell 1990;
Banks 1991).  This is a decided improvement over the full-information “God’s eye view”
of classical game theory and is clearly of utility in situations where most of the
alternatives are constrained by the characteristics of the political situation (for example a
militarized dispute or an arms control negotiation).  I nonetheless question whether the
game theory approach to incomplete information is the appropriate form when the
alternatives are poorly defined (for example in assessing the dissolution of the Soviet
Union or Yugoslavia, or the future of Israeli-Palestinian negotiations).  Such unstructured
predictions were not in the original scope of game theory—which assumed a known set
of alternatives—and obtaining them pushes the limits of a technique already on thin
empirical ice.

Conceptual Problems with the Rational Choice Approach
As noted above, if an empirically accurate theory of international behavior can be

constructed and tested using axioms similar to those used to model economic behavior,
then there are good reasons to pursue such an approach.   These advantages include the
practical utility of being able to employ the results of a century of work in mathematical
economics and the wider philosophical objective of finding a set of “universal” laws
governing human behavior.  My contention, however, is that there are fundamental
differences between the behavior we describe as “economic” and that we describe as
“political”, and any models of international behavior must systematically account for
those differences.28

There is no single definition of what constitutes the “economic” approach, and
definitions in books explicitly following the rational choice approach (e.g. Riker and
Ordeshook 1973; Bueno de Mesquita 1981) are very diffuse and occupy entire chapters.
The following two definitions would seem to capture the key points, however.  First,
from an excellent review paper by Frey:29

The homo œconomicus as dealt with here is certainly not the one found in the
traditional micro-economic textbooks, where it is assumed that economics actors
are fully informed or where the problem of uncertainty is defined away by

                                                  

28Lest I appear to be setting up a straw man, this issue is one of the most emotionally charged in
contemporary social theory. Economists, and political scientists in the rational choice tradition, almost
without exception feel that the assertion that political and economic behavior requires different models
indicates ignorance and a lack of appreciation of the full breadth of contemporary mathematical economics.
For every example proposed of behavior that is primarily political rather than economic, proponents of the
universality of the economic model construct what is, to them, a convincing economic model to explain the
phenomenon (also see Zeckhauser's comments in Hogarth and Reder 1987,254; and Green and Shapiro
1994 generally).  Political scientists outside the rational choice tradition, again virtually without exception,
tend to agree with the assertion and express concern that in attempting to fit political behavior into the
Procrustean bed of homo economicus, much of what passes for contemporary political science is
completely divorced from real world politics.

29 Frey (1992) provides a published source of these issues.
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postulating certainty equivalents.   Rather, the homo œconomicus here considered is
the much more advanced and generalized model currently used in non-market
economics, particularly in the economic theory of politics, or Public Choice
[Footnote in original: See in particular the works by Downs (1957), Buchanan and
Tullock (1962) and Olson (1965)].   This approach follows the methodological
individualism, it strictly distinguishes between preferences and constraints; takes
the preferences to be stable and explains changes in behavior by changes in the
constraints (e.g. in relative prices); considers marginal changes and stresses
substitution; and finally assumes that individuals behave in a consistent (“rational”)
way.  Economic man is thus considered to be resourceful (he searches for and finds
solutions, he learns and is inventive), restricted (he is confronted with scarcity and
has to choose between alternatives), expectant (he attaches subjective probabilities
to future events), evaluating (he has ordered and consistent preferences) and he is
maximizing his utility. (Frey 1983,2)

Becker’s innovative if controversial work in applying the economic model to
various sociological phenomena such as marriage, crime and fertility uses a definition
that is quite similar:

The combined assumptions of maximizing behavior, market equilibrium and stable
preference, used relentlessly and unflinchingly, form the heart of the economic
approach.(Becker 1976,5)

Following Frey, one can intelligently discuss an economic model even if the
classical assumptions of expected utility maximization are wrong and behavior is instead
non-linear, information rich, socially influenced and generally far more complicated than
EUDM assumes.

Nonetheless, I contend that there is a difference between the behaviors that we call
“economic” and that we call “political” which lies in the issue of private (excludable)
versus collective goods30.  “Economics” deals primarily with production and exchange of
private goods where the dominant constraints are physical, involving time and resources,
whereas “politics” deals primarily with the development of coalitions where the dominant
constraints are social, informational and historical.31  Economics is the study of behavior
determined by the interplay of preference and constraint; political science the study of
behavior dominated by the formation of coalitions to solve collective action problems

In economic activity, the single individual can be a viable unit; in political activity
the individual, alone, is by definition without political power—political power is
                                                  

30 A collective goods situation is one where goods are non-excludable: once provided, everyone derives
benefit.  The standard example is a lighthouse; free highways, national defense, and clean air are other
examples.  The individually rational behavior is to not participate in providing the good and simply let
others do the work.  If everyone follows this logic, the good is not provided, hence the paradox.  The best
known modern work on the problem is Olson (1965); Barry and Hardin (1982) provide a good collection of
readings on the issue, which has unsurprisingly dominated much of contemporary political theory; Sandler
(1992) provides an excellent integrated introduction to both the political and economic issues, including a
variety of empirical applications.

31 The term "coalitions" is used here in the general sense of the collective action literature—any group of
actors collectively engaging in a mutually-beneficial activity.  The military coalitions founds in
international politics are one example but not the only.
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achieved only when groups of individuals act in concert.  The physical requirements of
production and consumption required for survival vary little between individuals, across
time, or even across cultures, and therefore the assumption that these may be held as
universals in determining economic activity is, prima facie, not unreasonable.  But
assuming the same consistency in the culturally and historically mediated behavior of
political coalition formation is a major step.  Economic behavior exists to provide
efficiently the basic goods that individuals require to survive; political behavior exists to
solve public goods and Prisoners’ Dilemma problems required for organizations to exist.
Economics in the end is a physical process, politics a social process.  Robinson Crusoe,
living alone on an island, still had to solve economic problems; he did not have political
problems until the arrival of Friday.

To take the extreme case, war is a profoundly cooperative act.  Modern warfare
requires the coordination of literally millions of individuals to expend a great deal of time
and fortune to send a few of their number great distances to kill people they’ve never met
and whose deaths produce no direct benefit.32  The conflictual aspect of war is the tip of
two vast cooperative icebergs: modern war requires political organization.  Primitive
societies without large hierarchical systems and institutions cannot engage in this form of
war, but only in short-lived brawls and organized thievery emphasizing individual
heroism; civilization is required to wage war.

Along a similar line, there are many political activities that individuals would not
undertake voluntarily, but do because of the threat of sanctions.  But where do those
sanctions come from?—obviously from the coordinated actions of individuals in the form
of the police, a bureaucracy, the community, a neighborhood gang or whatever.  Behind
every set of anticipated sanctions lies a great deal of institutionalized cooperation; an
“absolute” dictator such as a Hitler or a Stalin requires a lot of help.  As Hobbes
observed, all humans must sleep, and any human who is asleep is vulnerable to
destruction: this vulnerability can only be countered through political coordination.

These institutionalized cooperative structures are so common that we tend to take
them for granted.  A great deal of political theory presupposes the existence of the
“state”, a reasonable assumption since persistent political institutions are a prior condition
for the social stability required to permit the writing and dissemination of works on
political theory.  Strictly speaking, however, the activities of the “state” require an
individual-level justification as collective action: one cannot assume that the state can
“force” actions such as military service or taxation without also solving the collective
action problem of coordinating those who are going to do the forcing.

Virtually all civilizations have distinguished between behavior that is economic and
behavior that is political.33   We can also recognize political behavior occurring at various
levels: the term “office politics” has meaning to anyone who has worked in a large
organization, and “office politics” shares some characteristics with politics at higher
levels.  In “office politics” leaders can be identified; there are agendas of issues under
active debate and issues considered resolved; there are crises resulting in policy change,

                                                  

32 As distinct from criminal homicide, which is usually directed either against spouses, friends and
relatives or in the course of an economic exchange such as a drug deal or robbery.

33 More so, for example, than they differentiate between behavior that is religious and behavior that is
political: Jaynes (1976) argues for a psychological convergence of these two in early human history.
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and so forth.  These political activities usually occur in the absence of direct economic
exchange34, though a change in economic circumstances may be one of the results of the
political activity.

Because economic and political activities differ in their fundamental focus, models
of the two types of behavior ultimately will be different, though they will doubtless share
some characteristics.  The two theories are unlikely to diverge on the issue of
preferences: one can safely assume these exist in both market and non-market behavior.
At issue is whether maximization (or what form of maximization) explains the
regularities observed in behavior considered political.

Resources are the limiting factor in economic behavior: individuals have a finite
amount of time and money and wish to utilize these in a manner maximizing the
acquisition of goods and services that increase ones sense of well-being.  Utility responds
monotonically to resources for most people, and if individuals or organizations are either
sufficiently intelligent to know what is good for them, or exist in a system that enhances
the survival of those who act as if they were maximizing, a model assuming some form
of maximizing principle (not necessarily EUDM) will have predictive value.

In political affairs, in contrast, the limiting resource is coordination rather than
maximization.  Utility maximization alone rarely provides a sufficient organizing
principle to explain political behavior; the solution of the collective goods behavior
problem by maximization is not a solution.  A predictive theory must therefore rely on
additional mechanisms such as institutions, rules, concepts of fairness, memory and so
forth, even when it involves preference.  As March and Olden note

Although self-interest undoubtedly permeates politics, action is often based more
on discovering normatively appropriate behavior than on calculating the return
expected from alternative choices.  As a result political behavior, like other
behavior, can be described in terms of duties, obligations, role and rules. (March
and Olsen 1984,744)

Frequently, the limiting factor in collective action situations is information on the
current and anticipated compliance of others.35  Participation in collective action is ill-
advised if there is evidence that most people are attempting to free ride, as this decreases
the likelihood that the good will be successfully provided, and means that one is investing
a disproportionate effort to obtain the good.  The attraction of Gandhi, Khomeini or
Mandela as political leaders is that they were not utility maximizers36: they could not be
                                                  

34 Economic exchange does occur in some political situations, but it is usually considered "rent-seeking",
"bribery" or "corruption", neither a term of approval.  Keeping economic exchange out of politics has been
a concern of theorists since at least the time of Mencius.

35 Ostrom (1990) provides an excellent analysis of these issues with respect to stable self-governing
systems for the maintenance of common-pool resources such as forests, fisheries and irrigation systems.

36 Those defending EUDM through ex post facto explanations would doubtlessly argue that these leaders
were maximizing utility in that they achieved more by being in opposition than by being bought off.  But
this assessment is virtually impossible a priori: identify, for example, the comparable utility maximizers in
contemporary Zaire, Palestine, Bosnia and Rwanda.  The chance of Gandhi, Khomeini or Mandela per se
succeeding was remote; dozens of leaders of comparable stature were either killed (for example Steven
Biko in South Africa) or successfully co-opted; and biographies of such leaders seldom emphasize a
dominant role for EUDM in their personal philosophies.
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bought.  As a consequence, they provided nuclei around which political movements could
coalesce.  Furthermore, the collective goods problem cannot be solved by the acquisition
of additional resources alone: if that were true, the British would still rule in India, the
Pahlavi regime would still rule in Iran and the apartheid system would be alive and well
in South Africa.

If utility maximization were the sole determinant of human behavior, political
activity should be characterized a high level of change and disorder one sees in markets.
In fact, the opposite is observed: the political world is usually very stable.  The mayor of
Chicago in 1960 was Richard M. Daley; the mayor of Chicago in 1995 is Richard M.
Daley Jr.: would simple chance or microeconomic maximization predict the choice, out
of 3.5-million people, of an individual who just happens to be the son of the former
mayor?37  At the organizational level, this order comes about in the form of rules and
institutions; at the individual behavior level, it comes about through norms of “fair play”,
“justice”, “morality” and other limits to individual utility maximization when collective
action is required.

Overall Assessment of the Rational Approach
This section has been considerably more detailed than the previous two and its

length testifies to the power and attractiveness of the various formal models of economic
behavior applied to the study of international behavior.  While the rational choice
approach certainly can—and has—provided important insights, rational choice this has
some critical weaknesses limiting its general application to the study of international
behavior.

The international system is fundamentally different from a market, where basic
information on price and demand is timely, inexpensive and accurate.  EUDM can model,
in a simplified fashion, the absence of information, but there is little, if any, evidence that
EUDM describes actual human behavior, and ample reason to believe it would not
describe the decisions made by groups under stress.  The decision to go to war is made in
a different fashion than the decision to go to lunch.

At the theoretical level, the decisions we characterize as political differ
fundamentally from those that we characterize as economic.  Maximizing behavior
acceptable and encouraged in the economic systems becomes self-defeating in a political
system.  No one wants to share a foxhole with a utility-maximizer.  The slow, ambiguous
and quasi-anarchic nature of international interactions make them particularly ill-suited to
economic models that assume fast feedback, full information and, implicitly, a known
and relatively constrained set of allowable behaviors.

When buyers in a market are dissatisfied with a price, they will refuse to buy the
product.  In the international system, they might steal the product, manufacture the
product, destroy the marketplace or decide, through a change in government, that the
product wasn’t desirable in the first place.  For governments such behaviors are typical;
for individuals they would be pathological.

                                                  

37 A phenomenon hardly limited to Chicago: Kansas's Senator Nancy Kassebaum "just happens to be" the
daughter of 1936 Republican presidential candidate Alfred Landon, a fact I became aware of when I heard
a retired member of our faculty refer to the senator as "that Landon girl".
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Rejection of the EUDM rational choice model currently popular in political science
does not mean the rejection of any model of rationality.  If anything, the opposite is true.
Simon notes:

Skepticism about substituting a priori postulates about rationality for factual
knowledge of human behavior should not be mistaken for a claim that people are
generally “irrational”.  On the contrary, I think there is plenty of evidence that
people are generally quite rational; that is to say, they usually have reasons for what
they do. … To understand and predict human behavior, we have to deal with the
realities of human rationality, that is, with bounded rationality.  There is nothing
obvious about these boundaries; there is no way to predict, a priori, just where they
lie. (Simon 1985,297)

When a road ends in a swamp, one can step on the gas in the hope that the swamp
is shallow and dry land lies beyond the next curve, but it is quite likely one will simply
spin one’s wheels or go deeper into the swamp.  Alternatively, in such situations, one can
search for another road.

Computational Modeling
The models described above are presumably familiar to any reader with knowledge

of contemporary international relations research.  Computational models—the focus of
this volume—effectively form a fourth general category of formal models.
Computational models are distinct in that they are specified algorithmically rather than
algebraically; they tend to be less parsimonious than either rational choice or differential
equation models, but in common with rational choice, the models usually have an explicit
information-processing component.

The computational modeling approach fills in some of the weaknesses in the
existing approaches identified above.  Specifically, they depart from the prevailing
techniques in at least the following ways:

Experimentation with a diverse set of formal structures.

Existing formal models have been strongly influenced by models of physical
processes—in rational choice, intermediated by economic modeling—and have generally
confined themselves to techniques that could be represented algebraically.  The
computational approach extends formal modeling to the much wider set of structures and
processes that can be represented algorithmically, and generally borrows its techniques
from computer science rather than mathematics.

As noted in Chapter 1, the computational modeling efforts in international relations
were originally seen as an extension of artificial intelligence research (Sylvan and Chan
1984; Cimbala 1987; Schrodt 1988b; Hudson 1991), but over the years its proponents
recognized that the AI agenda was quite distinct from most of the work being done on
international behavior.  While AI research clearly provided some important tools for the
development of computational models of international behavior, the theoretical bases for
the political models are primarily derivative of cognitive psychology, organizational
behavior and political science.
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A focus on discrete events rather than continuous variables, and ordinal rather
than continuous time.

This emphasis follows from the first: the tools of classical mathematics function
best in the continuous realm; digital computers, by necessity, function best in the discrete.
As I’ve argued in this chapter, most political decisions are framed in discrete rather than
continuous terms, and in many instances the computational approach provides a more
natural framework for modeling political behavior than that provided by the
mathematical approach.

A focus on short-term regularities.

Consistent with the rational choice approach and most statistical studies, but
distinct from many dynamic models and simulations, most computational models work
with short-term regularities rather than long-term processes or equilibria.  Computational
approaches—particularly rule-based models—differ from rational choice in their ability
to handle complex sequences of context-dependent, inter-related rules.

An emphasis on processes consistent with the information processing limitations of
human individuals and organizations.

As will be discussed in detail in Chapter 3, the decision-making approximations
found in computational models are usually informed by work in psychology and
organizational behavior rather than relying on mathematically convenient “as if”
assumptions such as EUDM.

Extensive empirical tests.

In contrast to the rational choice approach, computational models tend to be very
data-rich and demonstrate considerable breadth in their substantive foci.  For example the
topics in Hudson (1991) include the Johnson administration’s Vietnam policy,
Eisenhower’s Vietnam policy, Japanese energy security policy, economic development,
United States policy in the Caribbean, international relations in the early Cold War
period, the international events recorded in the BCOW and CREON data sets, the Senate
Foreign Relations Committee deliberations on the Persian Gulf in the 1980s, the Soviet
intervention in Hungary, and Luttwak’s theory of coups d’etat.

As I hope is evident in this chapter and the next, I am not suggesting the
development of computational models to the exclusion of the other types of formal
modeling.  I am simply suggesting that computational approaches reflect characteristics
of political decision-making that are not easily captured with algebraic methods.  The use
of different models to capture different elements of a behavior is not unusual: note that in
the arms race literature at least four distinct formal models have been developed to
explain the behavior:

• Differential equations (Richardson 1960)

• Comparative static models of duopolistic competition (Brito and Intriligator
1974)

• Iterated prisoners’ dilemma (Brams 1985)

• Dollar auction (O’Neill, 1985)
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While it may be possible to equate these through a major exercise in logical gymnastics,
they have very different assumptions about the underlying process, although all probably
reflect some elements of that process.

At the same time, I should also point out what I consider to be two key weaknesses
in existing computational modeling research.  The first weakness is the lack of a
systematic stochastic framework.  As discussed above, there are a number of good
reasons to treat international behavior as having a significant random component.
Appropriately, both the statistical and rational choice approaches are firmly based in a
stochastic conceptualization of politics and make extensive use of probability theory.

This has not been true of computational modeling, a problem the approach shares
with artificial intelligence generally.  The reasons for this are pragmatic rather than
theoretical.  First, there is no clear algorithmic analog to probability theory.  As will be
discussed in Chapter 4, fuzzy set theory and other alternative probability systems such as
Dempster-Shafer logic may eventually fill this gap, but currently these do not provide the
same level of support for computational models that probability theory provided for the
development of game theory and computational statistics in the 1950s and 1960s.  The
second reason concerns computer capabilities: probabilistic schemes could be
implemented using bootstrapping or Monte-Carlo methods, but these are extremely
processor-intensive and can challenge even the capabilities of supercomputers.  At
present, the prototyping and experimentation that characterize computational modeling
are practical only in a deterministic mode.  I would hope that once this bush clearing is
finished (and as computer capabilities increase), computational models will begin to
incorporate much more sophisticated stochastic elements to deal with the noise,
uncertainty and rational randomness of the political environment.

The second weakness of computational modeling to date is its failure to provide
significant new insights into general theories of international behavior.  I would attribute
this largely to the fact that the field is quite new.  After all, two decades elapsed between
the development of game theory in the 1940s and the widespread use of game theoretic
concepts in political science in the 1960s, and a similar lag occurred in the application of
systematic studies of public opinion.  Still, caveats are in order so that the approach is not
over-sold.38

At the present time, computational models are considered successful if they
produce plausible results.  For the most part, the models are not dramatically more
accurate than statistical models working with comparable data, nor are their insights
superior to those of informed intuition.  Machine-learning techniques—the focus of my
own work—are further hampered by their heavily inductive character and consequent
need to derive from their data considerably more information about the regularities of
political behavior than is required in a typical game theory or hypothesis testing model.
In the long term, this induction is a strength of the machine-learning approach, but the
early results can be pretty mundane.

Given this, why bother?  To this question, one can only respond with Faraday’s
reply to a query concerning the utility of his experiments with electricity, then a

                                                  

38 Unrealistic expectations have been a notorious problem for the field of artificial intelligence, which
fluctuates between well-funded periods of hype (1955-1965, 1980-1990) and poorly-funded periods of "AI
winter" (1965-1980, 1990-present).
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laboratory novelty: “What is the use of a new-born baby?”39   The newborn baby of
computational modeling is at present something of an ugly duckling.  In the future it may
become a beautiful swan, or it may grow into a larger but equally ugly duck, or it may
languish and fail to grow at all.  In order to assess the future of computational modeling,
we must look in detail at characteristics of international behavior that argue for this
approach.  These are discussed in Chapter 3.

                                                  

39 Confronted with this same question by William Gladstone, then Chancellor of the Exchequer, Faraday
took a more practical approach, "One day, Sir, you may tax it." (Mackay 1977,56)



Chapter 3
Patterns and Politics

It is a profoundly erroneous truism, repeated by all copy books and by eminent
people when they are making speeches, that we should cultivate the habit of
thinking of what we are doing.  The precise opposite is the case.  Civilization
advances by extending the number of important operations which we can perform
without thinking about them.

Alfred North Whitehead

This chapter develops a partial theory of the sources of international behavior that
justifies the development of the computational modeling techniques in Chapters 4, 5 and
6.  It is based on cognitive and organizational studies of foreign policy decision-making
and seeks to integrate three things:

• What international behaviors are sufficiently regular that computational
approaches can be used to model them;

• What types of information should be used in those models;

• What processes link this information to the observed behavior;

In behavioralist terms, I will be justifying my choice of dependent variables,
independent variables and formal model.  In so far as practical, formal models should be
consistent with what is known about the components of the system being modeled.  A
model of cell metabolism can assume the existence of an as-yet-unknown enzyme that
facilitates a specific reaction, but it cannot involve a violation of the laws of
thermodynamics.

In principle, a detailed justification of this sort should be part of every scientific
study.  The realities of research dictate that in practice we tend to choose our variables
based on the available data, and choose models—whether regression, differential
equations or games—based on known techniques (and I certainly do not exclude myself
from this characterization).  With the luxury of a book-length exposition, tenure and a
several years to deal with the problem, I am approaching the justification of
computational modeling in a more systematic fashion.  I am seeking points of intersection
between some of the computational methods made possible by contemporary computer
technology and data resources, and some of the characteristics of international political
behavior.  My objective is not to provide a universal model of foreign policy decision-
making, but to justify the use of a class of models for some aspects of that behavior.

The approach discussed in this chapter has guided my development of
computational models in international relations, and it could well guide the development
of methods far more sophisticated than those I’m presently able to demonstrate.  I suspect
that computational modelers, particularly those working with rule-based modeling, have
been guided by similar considerations.  However, this theory is not solely driven by the
availability of one or two very specific methods—it is not the proverbial hammer in
search of a nail.  Algorithmic specification imposes few constraints; computational
models have employed a relatively narrow set of methods compared to those available in
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artificial intelligence and computer science and this has been dictated (or at least
informed) by the nature of the phenomena being studied.

This chapter is somewhat multifaceted, jumping between cognitive, organizational
and political explanations.  A brief map of the morass into which we are about to plunge
follows:

1. Four basic concepts are defined: information, events, patterns and classification.

2. Some characteristics of foreign policy decision-making are discussed: foreign
policy requires prediction; it is an “ill-structured” problem; decision-makers focus
on predicting small sets of events rather than specific events; and prediction tends
to be short-term.

3. Humans are very good at pattern recognition and use recall instead of logical
reasoning whenever possible.  The international relations environment, due to its
inefficiency in providing information, is particularly well suited to the use of
pattern recognition.  Much of this occurs on a sub-cognitive level: one can find
patterns without being able to explain verbally how this was done.

4. Much of the knowledge required to make predictions is stored as stories.  A story
has a set of associated conditions and a temporal ordering of events.  Stories deal
with general patterns of behavior such as wars, coups and crises; a general story is
matched to a specific international situation using substitution rules.

5. Organizational decision-making is constrained by the necessity of communicating
and retrieving information.  Information processing is much less efficient when
communication must occur between individuals than when all of the processing
occurs within an individual.  Explicit organizational memory consists primarily of
a large number of relatively simple if...then rules that can be processed without
associative memory.  However, communication in an organization can also serve
to activate patterns held by its members; the content of communication is
therefore influenced by these shared patterns.

6. Individuals and organizations learn patterns and rules primarily by example and
through adaptive responses to the international environment, particularly the
success and failure of existing policy.  Policies are created by evolution rather
than by design, rules are not necessarily logically consistent, and the full
implications of a set of rules and patterns are unknown.

7. The use of rules, pattern recognition, and adaptation leads to behavioral regularity
in the system, particularly in the short-term.  The complexity of the behavior in
the system is constrained by the informational processing limitations of its
constituent parts, and the co-adaptation of competing organizations leads to
equilibrium sets of rules.

Definitions
The discussion in this chapter rests on the concepts of information, events, patterns

and classification.  While these terms are common in natural language discourse, formal
definitions and some associated concepts will be developed here.
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Information
Information provides the ability to discriminate between patterns; in other words, to

classify a case as fitting a particular pattern.  In information theory, information is “a
measure of the amount of selective work a message enables its receiver to do”
(Krippendorff 1986,13; emphasis in the original).1  Stated somewhat differently,
information is anything that could change a decision.

Decision-making organizations, particularly since the advent of electronic
communications, tend to have an abundance of material available that might be
information, but much of it is irrelevant to decision-making.2  Thus a distinction can be
made between “data” and “information”.  Data are potential information; information
must make a difference in a decision.  In the decision-making world, information is
usually in the form of text or numbers, because decision-makers receive almost all of
their information from secondary sources.

The information value of an attribute—its ability to discriminate between
patterns—is dependent on the situation being considered, so information is domain-
specific.  For example, electoral laws are probably of interest in a study of governmental
stability in a parliamentary system, whereas the ethnic composition of the military is
likely to be more important in a government with military rule.  Data that are information
in one problem may not be information in another.

In the situation of a classification problem (defined below), a feature vector is the
set of attributes describing a case.  The number of features is the dimension of the vector.
A feature can take any value from a set of values; for example if the feature is the size of
a country’s defense budget, the allowable values are positive numbers, whereas if the
feature is “type of government”, the values will be chosen from a qualitative typology
such as “liberal democratic”, “single party democratic”, “military”, “monarchy” and so
forth.  The values a qualitative attribute may take will be called categories.  The set of all
possible values of the feature vector describing a system is called the state space of the
system.

A term I will use frequently in the context of organizational decision-making is
bandwidth: the amount of information that can be conveyed in a unit of time.  This word
carries some unnecessary physical overtones (as does this metaphor…) but has no
obvious informal equivalent.  A narrow bandwidth means that relatively little information
can be conveyed; a wide bandwidth means that a great deal of information can be
conveyed.

                                                  

1 See Pierce (1980) for a general discussion of the development and use of information theory in its
original context, communications; Krippendorff (1986) provides an excellent discussion of its applications
to social science modeling and analysis.

2 In the policy literature, this is often called "intelligence": Fain, Plant and Millroy (1977,78) note the
official definition of intelligence in the Dictionary of United States Military Terms for Joint Usage:

Intelligence is the product resulting from the collection, evaluation and analysis of all available
information which concerns foreign nations or activities and which is immediately or potentially
significant to planning and decision-making.(Fain, Plant and Millroy 1977,78)

Note that this definition uses the term "information" to refer to the larger concept that I call "data".
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Events
As I will argue in more detail below, the focus of computational models, and

foreign policy decision-making generally, is on “events”.3  An early paper by
McClelland, one of the first event data researchers, provides the following definition

Event-interaction is meant to refer to something very discrete and simple—to the
veritable building blocks of international politics, according to my conception.  The
content of diplomatic history is made up, in large measure, of event-interactions.
They are the specific elements of streams of exchange between nations.  Here are a
few examples for hypothetical Nations A and B: Nation A proposes a trade
negotiation, Nation B rejects the proposal, Nation A accuses B of hostile intentions,
Nation B denies the accusation, Nation B deploys troops along a disputed
boundary, Nation A requests that the troops be withdrawn, … Each act undertaken
by each actor as in the illustration is regarded as an event-interaction. (McClelland
1967,8)

In the simplest terms, an event is an interaction between two entities in the international
system.  Gerner et al (1994,95) provide a more formal definition:

An event is an interaction, associated with a specific point in time, that can be
described in a natural language sentence that has as its subject and object an
element of a set of actors and as its verb an element of a set of actions, the contents
of which are transitive verbs.

Whether a particular interaction is or is not an event depends on the individual or
organization and the substantive domain of the decision.

Actors are the persons, organizations and places that might affect a decision.  The
decision-maker is interested in only certain interactions between these actors, and these
can be described by transitive verbs such as “apologize”, “met with”, “endorsed”,
“promise”, “accuse”, “threaten”, “attack” and so forth.4  Multiple verbs might signify the
same category of behavior, either because the words are synonyms within the language
(e.g. “grant”, “bestow”, “contribute”, “donate”) or because the behaviors, though
linguistically distinct, are politically equivalent, as with Most and Starr’s (1984) “foreign
policy substitutability”.  These equivalence sets vary with the individual and the specific
problem being considered.

Pattern
While Margolis’ assertion that “Pattern recognition is all there is to cognition”

(1987,3) is stating the case excessively, pattern recognition is an important foundation for

                                                  

3 For surveys and critiques of event data research in international relations, see Andriole and Hopple 1984;
Azar and Ben-Dak 1975; Burgess and Lawton 1972; Daly and Andriole 1980; Gaddis 1987; International
Studies Quarterly 1983; Laurance 1990; Munton 1978; Schrodt 1994; and Peterson 1975.  Merritt,
Muncaster and Zinnes (1993) provides a survey of current work in the field.

4 That is, a verb which can take a direct object and indirect object.  For some events, the second actor is the
direct object of the sentence ("Syria accused Israel…"); in other cases it is the indirect object ("Saudi
Arabia promised economic aid to Syria").
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a computational model of politics.  The essence of pattern is coassociation: something is
“patterned” when one can infer unknown features of a case on the basis of known
characteristics.  The term “plaid shirt” is a pattern that matches a large number of objects
differing in color, weight, size and so forth, but it excludes a much larger class of objects:
“plaid shirt” will not match a car, a tie, the planet Mars, or even a striped shirt.  The
social pattern “Thanksgiving dinner” would, for most people growing up in the United
States, invoke a very specific set of objects, events and social interactions and these
would be distinctly different from the set of events invoked by the patterns “Christmas”,
“Passover” or “Fourth of July”.

Coassociation is established through repetition: A cluster of attributes must be
encountered repeatedly and can be expected to be encountered in the future.  In political
analysis patterns usually have a set of historical instantiations but they could also be
counterfactuals—for example the patterns leading to the outbreak of nuclear
war—established through stories or contingencies.  In the post-WWII period, the pattern
“U.S.-sponsored change of government” would include the historical examples of
Guatemala 1954, Iran 1954, Grenada 1983, and Panama 1989, but in some contexts it
might also include the counterfactuals Cuba 1961 and Iraq 1991.

This does not mean that all patterns are distinct.  For example, the pattern “U.S.-
sponsored change of government” might include the elections in Nicaragua in 1990.  The
U.S. at times claimed credit for this, and certainly approved of the outcome, but the
techniques employed were quite different than the situation in Panama in 1989 or Kuwait
in 1991.  The classification of a case depends on how it compares to the universe of
cases: If Nicaragua is compared to changes in Eastern Europe in 1989, then the US was
actively involved; if compared to Grenada, Panama or Kuwait, the U.S. was not.

Coassociation allows one to fill in missing, hidden or noisy features on the basis of
known features, and to identify obscure things from obvious ones.  For example, when
aerial surveillance of Cuba in 1962 revealed the construction of Soviet-style missile
launching sites—conveniently constructed in Cuba in a fashion identical to sites in the
Soviet Union—U.S. intelligence agencies inferred that the USSR intended to deploy
missiles targeted at the United States.  In this instance, easily obtained physical evidence
was used in place of difficult-to-obtain evidence on Soviet policy.  This inference
involved patterns of Soviet Cold War policy as well as the physical patterns of missiles
and missile sites; for example the concurrent Soviet construction of a soccer field in Cuba
did not imply the impending deployment of Soviet soccer teams.

Concepts or typologies are simply a shorthand for coassociational groupings:

[W]hat delimits a particular class of objects, qualities, actions or relations is not
some sort of ideal example.  Rather, it is a list of qualities.  … the language of
everyday life makes arbitrary, overlapping and less than all-inclusive divisions of
experience.  It is by means of such lists of qualities that we identify doors,
windows, cats, dogs, men, monkeys and other objects of daily life.  … Our lives do
not present fresh objects and fresh actions each day.  They are made up of familiar
objects and familiar though complicated sequences of actions presented in different
groupings and orders. (Pierce 1980, 119-122)

The political science lexicon develops concepts such as “death squad”, “urban
bias”, “dependencia”, “peacekeeping operations”, “dirty float”, and “multinational
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corporation” as it finds clusters of attributes and behaviors that are usefully grouped
together.

Classification
Patterns are used to differentiate between cases.  A classification problem is the

task of assigning a case to one of a finite set of classes, which may include “unknown”.
While one does not normally think of human decision-making in terms of classification, a
large number of “expert” decisions—for example almost all diagnosis, repair,
configuration and approval tasks—can be formulated as classification problems.

The best-known classification problem in the AI literature is that of medical
diagnosis: a patient has a variety of symptoms (e.g. fever, muscle cramps, headache, no
cough) and needs to be classified into a specific disease category (e.g. cold, flu, food
poisoning).  A “disease” is simply a pattern of attributes dealing with the patient’s health,
and some of these features are useful in determining the future state of health (e.g.
“Patient has a cold and will recover full in 7 days with treatment versus a week without
treatment” or “Patient has acute appendicitis and without treatment will die”).

Many political decisions are classification problems.  For example, if country X
appeals to country Y for assistance, choosing the appropriate response is a classification
problem for Y.  Decision-makers in Y will consider the features of the case, such as the
history of past relations, the reasons for the request, and the policies of other actors in the
international environment, and then choose a response, for example whether to send
economic aid, arms, troops, aid through multilateral agencies, or no aid at all.  The set of
possible responses may be small—for example a Yes/No answer—or large.  Typically a
complex problem will be decomposed into a set of more specific problems: for example
an aid decision might first involve the type of aid, then the amount, then the timing and
side-conditions.

The utility of a feature in a classification problem depends on its cost, reliability
and ability to discriminate between the categories to which a case might be assigned.  The
ideal feature provides a high level of discrimination can be acquired at low cost and is
reliable.  A feature is redundant—provides no new information—if replacing it with a
single value makes no difference in the ability of the remaining features in the vector to
classify.  For example, in evaluating the capabilities of military hardware, one is unlikely
to be interested in whether a tank can make carrier landings or whether a jet aircraft can
ford streams.

In classification problems, even missing data may carry information useful.  For
example individuals who fail to answer survey questions are not a random sample of the
population.  In some contexts this could provide information.  If individuals who refused
to answer a survey question regarding their income level were also less likely to support
tax increases, the missing value would still provide information on the support in a
population for tax increases.
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Problem-Solving and Prediction in the International System
Fundamental to any model of foreign policy decision-making is the task of

prediction: anticipating the likely consequences of an action or absence of action.5

Prediction is simply temporal coassociation of the current features of a case with its
future features.  The passage of time turns a prediction problem into a classification
problem; in other words, viewed in retrospect, one can ascertain how information
available at time t coassociated with behavior at some time t+k.

This predictive element of problem solving in foreign policy tends to be implicit,
rather than explicit, in many formal models.  Prediction is relatively straightforward in
numerical models because the range of future numbers is typically bounded, and in any
case are numbers.  For example defense expenditures are usually substantially less than
100% of GNP; interest or economic growth rates rarely change more than a couple of
percentage points from year to year.

In contrast, modeling discrete political choice is more difficult because the universe
of possible events is so varied.  The following is the list of the first 12 international
events reported on Agence France Presse on 14 January 1992.

U.N. to consider membership applications of former Soviet republics
Ukraine and Russia to divide up Black Sea fleet this week
U.S. farm exports to Australia up sharply
Rover car firm considering production in Russia
Israeli and Palestinian negotiators hold their first formal session,
Arabs still divided a year after Gulf war
Italy, Austria said ready to recognize Macedonia
Jakarta to welcome a UN official but not probe team
Palestinians ask Japan to pressure United States
U.S. warns Pakistan to destroy components for two nuclear bombs
First visit by a Thai premier to Hanoi
Indonesia and Papua New Guinea sign defense accord

In the absence of additional information, every one of these events—and tens of
thousands of others—is a possible consequence of, say, the USA accusing Iraq of hiding
nuclear weapons material.  However, a human analyst will typically focus on a tiny
subset of those events.  In this set, the only plausible events that might be a consequence
of U.S. criticism of Iraq’s nuclear weapons program are the similar criticism against
Pakistan and possibly the statement about the Arabs being divided over Iraq.

More abstractly, consider the universe of equiprobable events generated in a system
with 200 actors and a 60-category event-coding scheme.  This produces 2,400,000
possible dyadic interactions with an entropy (see Chapter 5) of 14.7.  Suppose in
constructing an expected utility model, this choice space is reduced to a decision tree
with 7 branches and an assigned probability distribution of [0.05, 0.1, 0.2, 0.3, 0.2, 0.1,

                                                  

5 Researchers who have done multiple, systematic studies on political problem solving include Voss (Voss
et al 1983 1986; these studies cover general social science problem solving), Purkitt and Dyson (1986,
1987), and Boynton (1988); Purkitt (1991) provides an excellent review of this literature from a
computational modeling perspective; Vertzberger (1990) provides an encyclopedic survey of these issues
from the standpoint of foreign policy decision-making.
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0.05], which has an entropy of 1.76.  The construction of the model has reduced the
complexity of the problem by 99.9997% in terms of the choice space, and 88% in terms
of entropy.  The modeler did the bulk of the reduction of uncertainty, not by the model.

Ideally a model of foreign policy decision-making should specify how the set of
possible political outcomes is reduced to that much smaller set of likely outcomes
without those outcomes being specified a priori.  At present most existing formal models
with qualitative domains, as opposed to numerical domains, do not do this.  As noted in
Chapter 2, while these models may be useful in illuminating some aspects of foreign
policy problem solving, they miss most of the process.

Ill-defined problems
The political world is an “ill-defined problem” in the taxonomy established by

Ashby (1956).  In an excellent article reviewing such systems, Moray defines these as6

…an ill-defined system is one whose state-transition matrix cannot be known,
either because some states are inaccessible, or because some of the transition
probabilities are inaccessible, or because the matrix is not time-invariant. … The
list of variables in the state vector may not be constant, new variables may appear,
old ones disappear, and the transition probabilities may alter from time to time. …
Finally, it should not be overlooked that the ill-defineness of an observed system
may be the result not of chance but of intelligent hostility. (Moray 1984, 11,14)

Ill-defined problems present a substantial change challenge to traditional
mathematical theories of decision and control (see Selfridge, Rissland and Arbib 1984).
Mathematical models usually deal with systems that are well-defined.  The control
mechanisms of an automobile engine function consistently because variables such as the
ratio of fuel to air and the timing of ignition sparks have a predictable effect; the
operation of the machine can therefore be optimized.  Similarly, a space probe can be
sent millions of kilometers to rendezvous with a planet because the laws of gravity do not
change, and the system can be described using a few numbers dealing with mass, position
and velocity.  Most of the commonly modeled physical systems—and microeconomic
systems—are well defined: that is why they are studied with models.7

Early researchers attempting to model political systems hoped that such systems
would also be sufficiently well defined that simple mathematical methods could be used.
For example, this belief presumably accounted for the emphasis on cybernetic approaches
in the work of early behavioralists such as Easton, Deutsch and Almond, and certainly

                                                  
66 Also compare this to Almond's discussion of "the ontological properties of politics":

[politics is] not readily amenable to cause-and-effect 'clocklike' models or metaphors.  Basically, this is
because the behavioral repertoires of elites and citizens are not fixed.  The actors in politics have
memories; they learn from experience.  They have goals, aspirations, and calculative strategies.
Memory, learning, goal seeking and problem solving intervene between 'cause' and 'effect, between
independent and dependent variable. (Almond 1990,35)

7 For example, while a stock market is complex and has stochastic elements, its state-space is numerical
and its transition matrix is sufficiently predictable that computerized trading programs can operate
effectively.
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accounted for the attraction of economic analogs to rational choice modelers.  In the
international system, however, the ill-defined aspects of the system—starting with the
pervasiveness of Moray’s “intelligent hostility”—tended to overwhelm the well-defined
aspects.

Yet while traditional optimization methods fail on ill-defined systems, humans are
remarkably successful in dealing with them:

Despite [all of their cognitive failures] it is clear that humans do, given enough
practice, frequently manage rather well to control systems which all the evidence
suggests they should not be able to.    [By] interacting with an effectively ill-
defined [system] a human is able (to adopt the language of optimal control theory
for an example) not merely to adjust his gain matrix, but actually to identify the
state variables, construct the gain matrix, construct the predictor and even construct
the appropriate estimator—and top change them all when the ill-defined [system]
changes its properties.   (Moray 1984, 18-19)

Ideally, a formal model of foreign policy decision-making should be able to
identify the credible consequences of an action or a sequence of actions, since the task of
prediction is inherent to determining the outcomes of various policy options.  This is a
very difficult and in many ways unsolved problem.  Human analysts, nonetheless, are
able to solve it to the extent that complex political activity is possible.

Short-Term Set Prediction
Political analysts are usually not concerned about point prediction—figuring out

precisely what will occur.  Instead, political prediction deals with reducing the very large
set of possible future events to a much smaller set of plausible events.  For example, in
Schrodt (1987a) I give an example of a set of predictions generated by a single
international event, the 1985 US diversion of an Egyptian aircraft carrying individuals
accused of hijacking the Italian cruise ship Achille Lauro.  These predictions involved
such things as the diplomatic responses of Egypt, Italy and the PLO, the involvement of
Italy and Egypt in the US interception (an event that had already occurred but which was
unknown to me at the time), and the eventual fate of the accused hijackers in Italy.  These
predictions proved accurate and were typical of the type of predictions that any political
scientist familiar with the situation might have made.8

Point prediction in politics is unnecessary because the individual or organization
can prepare for multiple contingencies simultaneously: for example when playing chess,
one doesn’t prepare for an attack on a single piece, but against multiple possible attacks
on multiple pieces.  Circumstances also exist where it is rational for an opponent to play
randomly; random behavior can also arise from vagaries in health, complex bureaucratic

                                                  

8 I have noticed that in the media, the role of the political scientist is usually to deal with the future:
historians deal with the past, journalists with the present, and the political scientist is asked "what happens
next?".



56 Patterns, Rules and Learning

interactions, natural disasters, equipment failure, communications breakdowns and other
circumstances.9.

Predictions of international behavior tend to be short term rather than long term for
two reasons.  First, the branching of contingencies, particularly those with random
components, causes the set of credible outcomes to expand exponentially with time.10

The human brain, unable to cope with an exponentially increasing set of options,
drastically trims this set, often using rules that attempt to bound the true outcome with
“best possible case scenarios” and “worst possible case” scenarios.  Second, human
planning in the competitive situations typical of politics is continually and deliberately
disrupted by the actions of opponents.  Thus while one may have a long-term plan in
mind, only rarely is it fully implemented.  These factors lead to the primacy of short-term
planning, and short-term regularity, over long term planning.  Long-term forecasting can
still occur, but with considerably less detail concerning specific actions and the timing of
actions than short-term forecasting.  Day-to-day decision-making is relatively myopic.

In contrast to the extensive attention paid to the accuracy of economic11 and
election forecasts (Gelman and King 1992; The Political Methodologist 5,3 (Summer
1994)), few formal tests are available in the published literature on the accuracy of
international relations forecasting.  Jensen (1972) tested the predictive abilities of 171
foreign policy experts (categorized as being journalists, State Department, Defense
Department, and academic) on a set of 25 questions.12   Answers were a loose set of

                                                  

9 During the 1980s, a favorite term paper topic in my U.S. Foreign Policy class was predicting the future of
the Clark Air Force Base in the Philippines.  None of the dozens of carefully researched analyses correctly
predicted the actual outcome: the base was abandoned after being buried in ash by the Mt. Pinatubo
volcano.

10 From Thomas Pynchon's novel, Gravity's Rainbow:

It occurred to him to focus on the European balance of power. … He started in on a mammoth work
entitled Things That Can Happen in European Politics.  Begin, of course, with England.  "First," he
wrote, "Ramsay MacDonald can die".  By the time he went through resulting party alignments and
possible permutations of cabinet posts, Ramsay MacDonald had died.  "Never make it," he found himself
muttering at the beginning of each day's work, "it's changing out from under me.  Oh dodgy, very
dodgy". (Pynchon 1973,77)

11 See for example the numerous articles on this topic in the Journal of Business and Economic Statistics.
The Economist (13 June 1992,75), quoting a study by economist Victor Zarnowitz of the University of
Chicago, notes an average improvement in the mean absolute error of forecasts of about 20% in U.S.
Treasury forecasts of GDP, inflation and the current account in the coming year when comparing 1979-84
to 1985-91 (for example, 1979-84 predictions for March inflation averaged 1.4%; those for 1985-91
averaged 1.2%), though it is not clear how much of this is due to improvements in the models versus
changes in the economy.

In a less systematic study, in 1984 The Economist (3 June 1995,70) also queried four former finance
ministers of OECD countries, four MNC CEOs, four Oxford students and four London garbage collectors
about economic trends for the 1985-1994 period.  The predictions were not particularly accurate and as
expected most errors could be linked to extrapolating trends from the early 1980s.  As to the impact of
expertise, the finance ministers as a group were the least accurate; the CEOs and garbage collectors tied for
the most accurate groups.

12A total of 51 questions were asked but many were contingencies—"If war between X and Y breaks out,
then…"—that did not obtain so the accuracy of the prediction could not be evaluated.
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categories, such as “unlikely”, “relatively likely” and “very likely”, which depended on
the question.  The overall success rate was about 64%, which is considerably better than
chance but hardly outstanding.  The Jensen study dealt with predictions on the order of
one to five years, rather than with the shorter-term predictions, where I suspect the
accuracy would be higher.

In an informal exercise at the end of September 1990, I had the undergraduate
students in my international conflict class make detailed predictions about the state of the
Iraq-Kuwait crisis as of the final day of class in mid-December.13  A large majority of the
students (and the instructor) got the prediction wrong, expecting the outbreak of armed
hostilities in late October or early November.  However, four students—about 10% of the
class—predicted the situation in December almost exactly, including the use of the
United Nations, the continued allied buildup, and the coalition-building activities of the
Bush administration.  Short-term prediction is definitely possible.

The literature on strategic deception actually provides a fascinating “exception that
proves the rule” on the importance of patterns in predicting political behavior.14   A
successful deception involves the elaborate creation of a “world” that makes sense to the
organization being deceived.  Whaley, summarizing the reasons for the success of the
Barbarossa deception that preceded the German invasion of the Soviet Union in 1941,
concludes:

I suddenly realized that the Wohlstetter model [of strategic surprise being due to
noise] was a quite inappropriate representation of BARBAROSSA surprise.  Stalin
(and almost everyone else) had been surprised not because the warnings were
ambiguous but precisely because German intelligence had managed to reduce their
ambiguity.… [Hitler’s] cunning “ultimatum” stratagem served to eliminate
ambiguity, making Stalin quite certain, very decisive, and wrong.… Stalin’s false
expectation was the direct effect of Hitler’s campaign to manipulate his victim’s
information, preconceptions, and decisions. (Whaley 1973,242; italics in original)

Wohlstetter’s (1962) study of the successful Japanese surprise at Pearl Harbor
emphasized the signal/noise problem in information processing, whereas in a strategic
deception, the signal of the adversary’s actual intentions is hidden not through noise or
secrecy, but by an alternative explanation for events.

For example, part of the deception in Barbarossa involved convincing the Soviets
that German troop movements were part of a plan to invade Britain.  In reality, that plan
had been abandoned months earlier.  To further confuse matters, the Soviets were led to
believe that Barbarossa itself was a deception. directed against the British, protecting
German plans to invade Britain (Whaley 1973, 173).  In the successful “Bodyguard”
deception plan preceding D-Day the deception was fine-tuned to the knowledge and
pattern recognition of the German intelligence agencies, which the British could monitor
because they had broken the German communications codes.

                                                  

13 See Kugler, Snider and Longwell (1993) for a more systematic analysis of real-time predictions in this
crisis.

14 The well-studied examples include Germany's Operation Barbarossa in WWII (Whaley 1973), the
Allied deception of Germany prior to the D-Day invasion (Brown 1975), and the Egyptian-Syrian
deception prior to the 1973 October War (Handel 1976)
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Finally, strategic deception was effectively used during Operation Desert Storm in
convincing Iraq that the U.S. would attempt an amphibious landing from the Persian
Gulf.  In addition to several well-publicized practice landings, a fine twist to the
deception were leaks to the media reminding them of the inter-service cooperation
problems encountered by United States forces during poorly-coordinated invasion of
Grenada.  The media, Iraqi military (and this author) were thus convinced that the Marine
Corps would “insist” on an amphibious operation.  In fact, the Goldwater-Nichols Act in
1986 had eliminated the coordination problems, no amphibious operation took place, and
Iraqi defensive preparations on the Kuwaiti coast were wasted.  Egypt and Syria used a
similar strategy against Israel in 1973, playing on Israeli assumptions that Arab states
would never be able to politically coordinate a joint attack.

Ironically, predictions can structure political behavior irrespective of their
accuracy.  Because planning requires prediction, the complexity of political behavior is
constrained by its participants’ ability to predict.  From a purely statistical standpoint, the
political world is very predictable and adjusts itself to reduce uncertainty.

We perceive a very uncertain political world because we disproportionately notice
its uncertain aspect.  In fact, we experience a truly random world only in nightmares, bad
avant garde films, postmodern exegesis and after ingesting controlled substances.
Imagine, for example, a mob of pitchfork-wielding peasants marching on a government
building and pulling down a fence.  Ah, a violent demonstration, we conclude.  But the
peasants take the fence posts, build fires, and roast sausages using the pitchforks.  Aha, a
picnic.  But from the building come a blare of trumpets and a young man wearing a
tuxedo appears beside a young woman in a long white gown.  Hmm, well, maybe this is a
wedding.  Seeing this, the peasants put down their sausages, level their pitchforks at the
couple and rush forward.  Well, maybe it’s a riot after all, with a break for lunch.  But
then the woman raises her hand and the peasants stop, form large circles and dig
frantically at the pavement trying to plant turnips.

Such a scenario reads like a bad dream, perhaps induced by a dinner of sausages
and turnips.  But even this sequence is far from truly random—from my brief description,
the reader has probably invoked an elaborate mental image using associated patterns of
social behavior.  For example, how wide is the street?  What are the peasants wearing?
What does the facade of the building look like?  Does the gown have lace and a veil?  I
supplied none of these details but your mental image probably contains them.

“Random” is not the same as “unexpected”  When we speak of “anarchy”,
“disorder” and “unpredictability” in social behavior, we are rarely referring to true
randomness but instead to transitions among highly patterned modes of behavior.  A
“riot” is a form of regularized behavior with predictable characteristics (e.g. shouting,
large crowds, looting, attacks on police, etc.) as much as a “parade” is a regularized
behavior.  The amount of information required to specify a riot is probably similar to that
required to specify a parade: the rules for proper behavior in a riot (that is, riotous
behavior) are merely different from those governing behavior in a parade.



Patterns and Politics 59

Pattern Recognition
It is becoming increasingly apparent that biological systems are much more
complex than the technological systems usually considered by the control engineer.
A technological system is usually designed on the basis of predesignated criterion
of stability and response which are expressed in some analytical form.
Physiological systems, on their other hand, have evolved slowly, continuously,
adapting the performance of specific tasks to a wide variety of conditions. …
Natural selection is not saddled with an expediency demand.  The evolution of
physiological control systems might, therefore, be expected to result in optimal
systems chosen with the complexity of description not at all entering as a limiting
factor.

B. Pennock and E.O. Attinger.

Pattern recognition is the ability of an individual to consider a complex set of
inputs, often containing hundreds of features, and make a decision based on the
comparison of some subset of those features to a situation that the individual has
previously encountered or learned.15  Pattern recognition is useful in the analysis of
politics because certain sequences of political behavior occur on multiple occasions under
relatively predictable circumstances.  In problem solving situations, recall can substitute
for reasoning.  For example, chess involves a well-defined, entirely deterministic system
and should be solvable using purely logical reasoning.  Chess-playing computers use this
approach, but Chase and Simon (1973) found that human expert-level chess playing is
done primarily by pattern recognition.

Humans possess very large, albeit imperfect, long-term memories.  Failures in the
fidelity of this memory are compensated by the fact that it is associative: we can recall a
large amount of information from a small number of features, even in the presence of
noise.  Information about the fruit “apple” can be invoked by a smell, a taste, a variety of
objects, a variety of words (e.g. “apple”, “Red Delicious”, “Winesap”, “cider” ) and a
variety of social memories, as well as by the noisy stimuli “Aqple” or the rainbow-
colored trademark on an Apple computer.16

Pattern recognition is dependent in part on what the decision-maker is already
focusing on and the extent to which information fits with patterns already in memory; this
source of misperception is a major emphasis in the foreign policy decision-making
studies of Jervis (1976) and Khong (1992).  Vertzberger, summarizing a very large
literature in psychology17, observes

                                                  

15The literature on pattern recognition in human problem solving goes back to the 1960s, for example
Newell and Simon 1972, Simon 1982, Margolis 1987.  A substantial literature on pattern recognition also
exists in the AI literature (for example, Fu 1974, 1982; Patrick and Fatu 1986; Devijver and Kittler, 1987),
though the bulk of the AI literature on pattern recognition deals with spatial patterns—for example
distinguishing a tank from a truck—rather than temporal patterns.
16  [2nd edition]: The original Apple Computer logo consisted of rainbow-colored stripes, a motif intended
to remind the viewer that the earliest Apple ][ computers were capable of driving a color video monitor.
When Apple updated its industrial design in the late 1990s, the logo shifted to a solid, pearl white.

17 I've not included Vertzberger's references in the quote; see the original.
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The contexts of prior knowledge or expectancies also generate salience.  …
Information that has already gained attention in the past and penetrated the
perceiver’s cognitive system continues to attract attention,… even if its information
value has declined.…

Information consistent with expectations is better remembered and more accurately
rated than inconsistent information. … In particular, information that fits into
existing schemata—that is, cognitive structures of organized prior knowledge
abstracted from specific experiences—is noticed earlier, considered more valid, and
processed much faster than information that contradicts or does not fit into any
particular schema. (Vertzberger 1990,60)

Kahneman, Slovic and Tversky (1982) also deal extensively with these issues; a
variety of formal models for this type of memory have been developed, particularly in the
work of Abelson (1973), Anderson (1983) and Kohonen (1984).

International relations theory has begun to reemphasize the importance of non-
statistical patterns.  The “international institutions” and “regimes” literature (Krasner
1983) is quite explicit on this point.  Robert Keohane, in his 1988 presidential address to
the International Studies Association, notes

...”institution” may refer to a general pattern or categorization of activity or to a
particular human-constructed arrangement, formally or informally organized.
Examples of institutions as general patterns of behavior include Bull’s “institutions
of international society” as well as varied patterns of behavior as marriage and
religion, sovereign statehood, diplomacy and neutrality. ...What these general
patterns of activity have in common with specific institutions is that they both meet
the criteria for a broad definition of institutions: both involve persistent and
connected sets of rules (formal or informal) that prescribe behavioral roles,
constrain activity, and shape expectations. (Keohane 1988,383)

While neither Keohane nor most of the international institutions literature have provided
formal definitions of these patterns, their emphasis on the importance of pattern in
international behavior is unmistakable.

Recall is preferred to reasoning because working memory18, which must be utilized
in deductive reasoning, is slow and constrained to handling only a few items of
information at a time.  The long term memory used in pattern recognition, in contrast, is
effectively unlimited in capacity19 and works very quickly—on the order of
seconds—even when solving a complex associative recall problems across thousands of
potential matches.20  Purkitt notes:

                                                  

18 Earlier known as "short term memory".

19 See Newell and Simon (1972), chapter 14.  Newell and Simon argue that the capacity of associative
memory is effectively unlimited because the amount of time required to store items is sufficiently long that
life-span, rather than memory capacity, is the constraint.

20 As noted in Chapter 1, it seems that the brain actually invokes a pleasure response when solving
associative recall problems.  The two most popular televised game shows in the United States during the
1980s and 1990s were Jeopardy and Wheel of Fortune: both are associative recall games.  Crossword
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Generally speaking, the power and complex of human cognition is tied to the
almost unlimited capacity of humans to store and combine vast amounts of
information in long-term or associative memory. … Research has also
demonstrated that the active processing of information is a serial process within the
limited capacity of working memory.  In moving from the level of pieces of
information to the level of factors or indicators, it is now clear that individuals can
only systematically process information on a few (probably two or three) factors
without explicit cognitive aids (e.g. algorithms). (Purkitt 1990,40)

Associative memory is vast, effortless and quick; logical processing is limited,
painful and slow.  Consider the following four questions:

• Describe three uses of military force by the United States during the 1980s

• Who was attorney general during the 1963 Cuban Missile Crisis?

• What is 15% of $22.30?

• Prove the Pythagorean Theorem.

The answer to the first question will come to the international relations specialist
more or less immediately “from memory”.  However, the method by which the answer
was determined cannot be described—for example, were all instances of military force in
memory searched, all actions by the United States, or all international events in the
1980s?  One cannot say; this is instead done using “subcognitive processing”, discussed
below.  The answer simply appeared, without conscious operations, in a couple of
seconds.  Similarly, the second question can be answered quickly despite being stated in a
factually inaccurate manner.21

In contrast, most people can articulate the algorithm used to solve the third
question.  This may be general-purpose schoolbook multiplication (“multiply 2 by 5,
carry the one…”) or a specialized algorithm developed because the problem is commonly
encountered when calculating restaurant tips (“divide the total by ten by shifting the
decimal point to the left, then divide that by two, then add these two amounts”).  Failing
these, one can solve the problem on a calculator, and in any case the manipulation of the
information can be verbalized without difficulty.  The final problem involves the logical
manipulation of only a few axioms from plane geometry, virtually every literate person
has learned the proof in high school geometry, and yet its solution is difficult for most
people.

The latter two problems are far less information intensive than the first two—this is
why the third can be solved on a calculator—but require deductive processing.  In fact,

                                                                                                                                            
puzzles fall into the same category; as does the board game Trivial Pursuits.  All of these games involve
the rapid recall of specific information out of a huge memory on the basis of partial cues.

It may not be coincidental that these games gained popularity during an "Information Age" when
information became available in surplus.  Demonstrating skill at Trivial Pursuits or Jeopardy  may be the
contemporary equivalent to county fair competitions of physical strength such as wrestling and weight-
lifting in an earlier age when physical strength was economically important.

21 Robert Kennedy, and the crisis was in 1962, not 1963.  The fact that the attorney general was the
President's brother and actively involved in the crisis aids in the recall; I suspect most people could not
answer the same question for the U-2 crisis.
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the first two problems require a very large amount of historical information and complex
associative links.  The first problem could be solved using a large electronic database
such as NEXIS but constructing a query that duplicates only the three examples usually
retrieved by experts (Grenada, Lebanon and Panama) is quite difficult.  A slightly more
difficult query, e.g. “Indicate three changes in the NATO alliance between 1952 and
1972” becomes almost impossible even for NEXIS.  But such questions are nothing more
than typical college examination questions and barely worthy of consideration as expert
political knowledge.

Origins of Pattern Recognition
In all likelihood, the human brain evolved with a strong bias towards pattern

recognition rather than deductive reasoning.  This natural environment is comprised of
two systems: the physical and the biological.  Many aspects of the physical world can be
usefully described by deductive axiomatic systems, and an information-processing
system operating solely in a law-governed world would be able to survive with purely
deductive reasoning; examples would include computer viruses and programmed trading
systems.

The biological world, in contrast, is exceedingly complex and  arbitrary.  It is a
world of individuals constructed from complex feature vectors made of DNA, with
billions of components, and selected solely by the ability of their ancestors to reproduce,
oftentimes in unusual circumstances such as the aftermath of asteroid collisions.  Such a
world cannot be described deductively in any practical sense, but because it is very
repetitive, pattern recognition is an effective information-processing strategy.  If one
Tyrannosaurus Rex tries to devour you, the next one is likely to as well.  Since critical
decisions must be made in real time (“Is the object approaching me sometime I can eat,
something that will eat me, or something I can ignore?”), evolution will select for high
recall speeds under noisy environmental conditions.  It does not select for theorem
proving or the minimization of quartic polynomials.

This neural bias would emerge early in the biological record, well before the
development of primates, or mammals, or even vertebrates.  Homo sapiens sapiens is
endowed with sophisticated pattern recognition capabilities honed through eons of
evolution,  and it is unsurprising that this capacity is put to use in social behavior.
Deductive reasoning, in contrast, is a comparatively recent development and is much
more difficult.  While we are very proud of deductive reasoning, it is not necessarily
more useful, particularly when dealing with social behaviors that may also have some
evolutionary roots.

Anderson and Rosenfeld trace the pedigree of this idea to William James:

As James points out [in Psychology (Briefer Course) (1890)] emphatically in
several places, the brain is not constructed to think abstractly — it is constructed to
ensure survival in the world.  … [The design principles are:] do as good a job as
you can, cheaply, and with what you can obtain easily.  If this means using ad hoc
solutions, with less generality than one might like, so be it.  We are living in one
particular world, and we are built to work in it and with it. (Anderson and
Rosenfeld 1988, 1)
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Pattern recognition, unlike deduction, is easy.  Purkitt (1991) discusses research on the
variety of ways that the limitations of working memory cause decision-makers to take
cognitive shortcuts; these in turn affect communication and policy formulation.

An important consequence of the survival value of pattern recognition is a brain is
biased in favor of recognizing, rather than rejecting, patterns.  As Hugh Kenner (Byte,
November 1989,486) puts it, “The computer is a difference detector.  The human mind is
a similarity detector.”   The survival costs of fleeing in terror from a dimly perceived and
ultimately nonexistent threat are substantially lower than the risks of not fleeing a
genuine threat.  The ability of the brain to perceive patterns in random data is the bane of
statisticians and the true salvation of TV evangelists, but arises quite naturally from the
necessities of survival in a noisy environment.

Substantial parts of the brain are specialized for the social tasks of recognizing
faces and that most cognitively complex of all social interactions, language.  It would not
be surprising if the brain had in addition some specialized hardware for handling at least
some basic political interactions, for example the social hierarchies present in many
vertebrates.  Human associative memory may be able to handle, subcognitively, complex
episodic political information such as precedent retrieval in part because the brain
evolved in part to handle comparable problems.22

Subcognitive Processing
Studying associative recall is problematic because the process occurs in the non-

verbal, unconscious or subcognitive23 part of the brain: it is a form of information
processing that we can do but not articulate.  In the foreign policy field such reasoning is
typically called “intuition” or “feel.”  A typical example of this approach to foreign
policy analysis is found in the following quote from Kissinger:

Statesmanship requires above all a sense of nuance and proportion, the ability to
perceive the essential among the mass of apparent facts, and an intuition as to
which of many equally plausible hypotheses about the future is likely to prove
true.(Kissinger 1979,39)

Bull’s defense of the classical method states that the core of that approach is “that
general proposition about [international politics] must derive from a scientifically
imperfect process of perception and intuition” (Bull 1966,361).

Subcognitive information retrieval involves nothing mystical; the process can be,
and has quite extensively been, empirically studied (see Collins and Smith 1988; Reber
1993).  For example, Gilovich presented Stanford political science undergraduates with a

                                                  

22 Masters (1989) provides a thorough discussion of the possible connections between evolution and
political behavior; Axelrod (1984) and Simon (1990) note that evolution may have predisposed humans to
altruistic behaviors, a definite change for the bellicose "Social Darwinism" of a century ago.

23 This term is from Douglas Hofstadter (1985) via Holland et al (1986).  The word is attractive since
unlike "unconscious" it implies active information processing; it avoids the Freudian overtones of
"subconscious" and it is more general than the term "nonverbal".  Jackendoff (1987), while dealing with an
entirely different set of domains, provides an excellent discussion of subcognitive information processing
and a guide to much of the relevant psychological literature in the linguistic and visual perception domains;
Springer and Deutsch (1981) give a semi-popular review of the related literature on split-brain experiments.
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hypothetical crisis and asked them to make a decision about intervention.  Some of the
students were provided cues to suggest that the crisis was similar to Munich; others were
cued to a similarity to Vietnam; a third group was provided neutral cues.  As expected,
students cued to make the Munich analog “recommended significantly more
interventionist strategies than subjects in either the Vietnam or the neutral groups.”
(Gilovich 1981,805).  However, the groups did not significantly differ when asked about
the similarity of the hypothetical crisis to Munich or Vietnam:

Thus, though the subjects made recommendations consistent with specific
historical episodes, they were unaware of the influence that these episodes
apparently had on their decisions.  This raises a very interesting issue, one in need
of further research, concerning the different levels of awareness at which this
process [of comparison] may operate. (Gilovich 1981, 806)

One can engage in very complex information processing without being aware of
how one is doing it, even using introspection. Lashley notes:

No activity of the mind is ever conscious. [Lashley’s italics]  This sounds like a
paradox, but it is nonetheless true.  A couple of illustrations should suffice.  Look
at a complicated scene.  It consists of a number of objects standing out against an
indistinct background: desk, chairs, faces.  Each consists of a number of lesser
sections combined in the object, but there is no experience of putting them together.
The objects are immediately present.  When we think in words, the thoughts come
in grammatical form with subject, verb, object, and modifying clauses falling into
place without our having the slightest perception of how the sentence structure is
produced. (Lashley 1956,4; quoted in Jackendoff 1987,45).

As Lashley points out, the most obvious example of subcognitive processing is
language.  An illiterate speaker with no formal linguistic knowledge can continuously
and effortlessly assemble grammatically correct sentences consistent with a grammar of
several dozen, if not several hundred, rules.  This skill is learned entirely by example and
can be observed in any average three-year-old child, in any culture.  One can also
construct grammatically correct sentences through rules—as is done when one is learning
a second language or in a machine translation system—but this is slow, awkward and not
characteristic of fluency.

Wittgenstein notwithstanding, a long series of empirical experiments demonstrate
that one can know things one cannot say, where “know” is defined as the successful
completion of complex information-processing tasks and “say” means verbalize.  One of
the consistent lessons from the machine learning literature is that verbal problem solving
protocols provided by human experts are usually much more complicated than the set of
rules logically sufficient to solve the problem.  An expert usually perceives that much
more information is required to solve a problem than is logically needed, and when asked
why will be unable to describe what that additional information provides other than
“feel”.

A likely explanation for this is that the expert actually does most of the problem
solving using associative pattern recognition and therefore cannot articulate the process.
The verbal protocol represents what the expert thinks he or she is thinking, rather than
providing an actual description of the problem-solving process.  Protocols are very useful
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in determining the information that an expert uses, but they cannot provide an accurate
step-by-step description of the information processing.

Knowledge Representation

Christian Science Monitor 5 May 1993

Because the state-space of political behavior is so complex, political analysis is a
very information-intensive process.  The information in used international politics is of
three major types:

• Declarative knowledge: Static facts, definitions, and associations.  Declarative
knowledge deals with “what is” from the standpoint of the decision-maker;

• Stories, precedents and sequences: Ordered sequences of events, usually with
an historical instantiation.  These guide long-term behavior and can be used to
infer the behavior of others.  Sequences are strategic: “what to do”;

• Rules and heuristics: If...then rules.  These deal with short-term behavior but do
not provide any long-term structure.  Rules are operational: “how to do it”

There is some overlap in the categories, in particular a story can be seen as a very
complicated heuristic, and an historical instantiation of a story is a form of declarative
knowledge.  Rule and stories are often stored as general “templates” that use the
declarative knowledge and “substitution principles” to match specific sequences of
events.  Declarative knowledge and stories will be discussed in this section; rules will be
discussed in the context of organizations and in Chapter 4.

Declarative Knowledge
Declarative knowledge is primary factual, linking specific actors to general

concepts.  Declarative knowledge is the sort one finds in an encyclopedia or almanac:
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The Republic of Niger is ruled by a military President and Supreme Military
Council, advised by a council of 20 ministers.  Islam is the dominant religion;
French is the official language, with Hausa and local languages widely spoken. …
Economically Niger depends on agriculture and mining; about 90% of its
workforce are herders or farms; the country is almost self-sufficient in food.
(Stonehouse 1985,234-235)

In addition to this “book knowledge”, decision-makers use a great deal of
“common sense” knowledge about the physical world: for example the statement “There
is a drought in Niger” plus the information above would lead one to conclude that its food
imports would increase, but this inference requires the additional knowledge that
agriculture requires rain, human beings require food and that in the absence of rain a
country dependent on agriculture would need to find alternative sources of food, and food
is a commodity traded across international borders.  Similarly, lack of concern over the
statement “There is a drought in Kuwait” would require the additional knowledge that
Kuwait is a city-state at the edge of a desert and is not dependent on agriculture.

Stories and Precedents
A “story” or, more formally, an event sequence, is a set of temporally ordered

events and an associated context or set of preconditions.  These are usually based on
simplified versions of history, though some are based on counterfactuals (see Fearon
1991).  Stories are easily transmitted and stored by individuals and the use of stories is
universal in human culture.  Whether sitting around the dying embers of a Neolithic
campfire or sitting in the departure lounge of an airport, humans find relaxation in a good
yarn.24

The use of stories as a means of knowledge representation is strongly associated
with the work of Roger Schank (e.g. Schank and Abelson 1977; more recently Schank
1990):

The form of memory organization upon which our arguments are based is the
notion of episodic memory…organized around personal experiences or episodes
rather than around abstract semantic categories.… [O]ne of the principal
components of memory must be a procedure for recognizing repeated or similar
sequences.  When a standard repeated sequence is recognized, it is helpful in
‘filling in the blanks’ in understanding. (Schank and Abelson 1977, 18)

                                                  

24 Listening to stories and story-telling appears to be one of the dominant forms of human social
interaction: an alien anthropologist might conclude that humans exist primarily as information transmission
devices.  Monitor the lunch-time conversation among professionals and observe just how much time is
spent relaying stories.  For example, I'm writing this after final exams, and for the past two weeks the
departmental lunch-time conversations have been taken up primarily with (a) plagiarism and cheating
schemes; (b) idiosyncratic excuses that students present when requesting incomplete grades.  Topic (a) is
pure information exchange, as one obtains an extensive repertoire of techniques and the means of detecting
them, much as bacteria exchange snippets of DNA that provide resistance to antibiotics.  Topic (b) is
usually given with a request for a normative evaluation—"Now what would you do in this situation?"—but
is transmitted through a story, just as the typical student excuse is a story ("I have this uncle in Wichita who
I'm real close to and last week…").  Much of the memory and culture of an organization exists in its stories.
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Common story patterns are assigned to general categories, for example “crisis”,
“war”, “coup”, or “revolution”.  At the lowest level of aggregation, the elements of a
story sequence are events—interactions that can be described by transitive verbs—but
typically stories are constructed hierarchically, with complex sequences can be built out
of simpler subsequences.  Conversely a large amount of detail can be compressed into a
few statements by absorbing the details into commonly known patterns.

For example, the Cuban Missile Crisis could be described in very general terms by
the sequence:

USSR builds missile launchers in Cuba
USA discovers missile launchers
USA blockades Cuba
USA and USSR negotiate
USSR promises not to deploy missiles in Cuba
USA promises not to attack Cuba

This rendition is very simple but still sufficient to distinguish the Cuban Missile
Crisis from, say, Desert Storm or the SALT negotiations.  The event “USA blockades
Cuba” could be expanded to

President Kennedy convenes Executive Committee of the National Security
Council
ExComm considers six possibilities: do nothing, bomb, invade and blockade,
negotiate internationally, negotiate with Castro.
“Do nothing” option is rejected because…
“Bomb” option is rejected because…
and so forth.

In the international conflict literature, Lebow’s “justification of hostility crisis”
provides an example of a general episodic structure.

1. Exploit a provocation to arouse public opinion.
2. Make unacceptable demands upon the adversary in response to this

provocation.
3. Legitimize these demands with reference to generally accepted

international principles
4. Publicly deny or understate your real objectives in the confrontation.
5. Employ the rejection of your demands as a casus belli.  (Lebow 1981,29)
Lebow develops this sequence using crises such as the Austria/Serbia in 1914,

Japan/China in 1931, Germany/Poland in 1939 and USA/Vietnam in 1964.  The sequence
also fits nicely the actions of Iraq towards Kuwait in the summer of 1990.  Table 3.1
shows the relevant Reuters headlines and lead sentences for the events that match the
justification of hostility sequence:
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Table 3.1.  Justification of Hostility Crisis: Iraq/Kuwait 1990

July 17, 1990: RESURGENT IRAQ SENDS SHOCK WAVES THROUGH GULF ARAB STATES  
Iraq President Saddam Hussein launched an attack on Kuwait and the United Arab Emirates (UAE) Tuesday,
charging they had conspired with the United States to depress world oil prices through overproduction.

July 23, 1990: IRAQ STEPS UP GULF CRISIS WITH ATTACK ON KUWAITI
MINISTER 
Iraqi newspapers denounced Kuwait’s foreign minister as a U.S. agent Monday,
pouring oil on the flames of a Persian Gulf crisis Arab leaders are struggling to
stifle with a flurry of diplomacy.

July 24, 1990: IRAQ WANTS GULF ARAB AID DONORS TO WRITE OFF
W A R  C R E D I T S
Debt-burdened Iraq’s conflict with Kuwait is partly aimed at persuading Gulf Arab
creditors to write off billions of dollars lent during the  war with Iran, Gulf-based
bankers and diplomats said.

July 24, 1990: IRAQ, TROOPS MASSED IN GULF, DEMANDS $25 OPEC OIL
PRICE
Iraq’s oil minister hit the OPEC cartel Tuesday with a demand that it must choke
supplies until petroleum prices soar to $25 a barrel.

July 25, 1990: IRAQ TELLS EGYPT IT WILL NOT ATTACK KUWAIT
Iraq has given Egypt assurances that it would not attack Kuwait in their current
dispute over oil and territory, Arab diplomats said Wednesday.

July 27, 1990: IRAQ WARNS IT WON’T BACK DOWN IN TALKS WITH
KUWAIT   
Iraq made clear Friday it would take an uncompromising stand at conciliation talks
with Kuwait, saying its Persian Gulf neighbor must respond to Baghdad’s
“legitimate rights” and repair the economic damage it caused.

July 31, 1990: IRAQ INCREASES TROOP LEVELS ON KUWAIT BORDER    
Iraq has concentrated nearly 100,000 troops close to the Kuwaiti border, more than
triple the number reported a week ago, the Washington Post said in its Tuesday
editions.

August 1, 1990: CRISIS TALKS IN JEDDAH BETWEEN IRAQ AND KUWAIT
COLLAPSE  
Talks on defusing an explosive crisis in the Gulf collapsed Wednesday when
Kuwait refused to give in to Iraqi demands for money and territory, a Kuwaiti
official said.

August 2, 1990: IRAQ INVADES KUWAIT, OIL PRICES SOAR AS WAR HITS
P E R S I A N  G U L F  
Iraq invaded Kuwait, ousted its leaders and set up a pro-Baghdad government
Thursday in a lightning pre-dawn strike that sent oil prices soaring and world
leaders scrambling to douse the flames of war in the strategic Persian Gulf.

Source: Reuters
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Stories are generalized into ideal cases that I will call “templates”.  When a
decision-maker refers to the danger of a coup in El Salvador, this usually refers not to a
specific coup but coups in general25.  In order to apply a template to a specific case, a
decision-maker uses substitution principles in combination with historical or idealized
sequences of international events to create analogies:

Analogy = precedent + substitution principles

Substitution principles are primarily based on declarative knowledge about the
actors involved—for example does the actor have allies; is it a major power; where is it
located—though they may also involve contextual knowledge about the historical
circumstances of the story (for example, did the story occur before, during or after the
Cold War period).

Consider the template

[Tension between X and Y]
[Political instability in X]
[Y invades X]
[X consolidates power and repels Y’s invasion]

If X=Iran and Y=Iraq, this describes the initial phases of the Iran-Iraq War circa
1980; if X=France and Y=assorted European monarchies it describes Europe circa 1790;
if X=Russia and Y=assorted capitalist states it describes the allied intervention in the
Russian Revolution in 1918-1920; if X=Bulgaria and Y=Serbia, it describes the Serbo-
Bulgarian war in 1885.  Sometimes these underlying general patterns are discussed
explicitly, more commonly they are used implicitly in arguments based on precedent and
analogy.

Substitution principles often derive simply from the natural language content of a
statement itself—for example in the case given above, X and Y would be any pair of
mutually antagonistic states.  However, the allowed substitutions might be specific to an
individual or organization.  For example, when United States decision-makers accepted
the Munich analogy as a guide to dealing with Vietnam, the substitutions

Southeast Asia 1965 = Europe 1938
North Vietnam = Germany
Ho Chi Mihn = Hitler
Ngo Dinh Diem = Churchill

was at least implicit in the argument and occasionally it was explicit.  North Vietnam’s
preferred analogy

Southeast Asia 1945 = North America 1775
French Indochina = British colonies

                                                  

25 An exception occurs when there is a clear and obvious precedent: for example U.S. policy towards
Ferdinand Marcos in the Philippines was discussed in terms of Marcos as "another Somoza", the
Nicaraguan dictator whose fall led to the establishment of the Sandinista regime opposed by the United
States.
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Ho Chi Mihn = George Washington
Ngo Dinh Diem = Benedict Arnold

was not accepted.  The U.S. also invoked the Munich analogy (endlessly…) when dealing
with Iraq in 1990-91; but this analogy was not invoked when dealing with Israel after
1967 or with Turkey after the invasion of Cyprus in 1974.

Stories have a number of advantages as a knowledge representation structure.
First, they solve the combinatorial problems that exist when only short-term rules or
heuristics are used: a story reduces the set of possible outcomes to something reasonably
finite.  This allows prediction through pattern recognition: a story is a pattern where the
early parts of the story are temporally coassociated with the later parts.

Weigley provides an interesting case of precedent over-ruling deductive argument:

In 1966 Walt Rostow called President Johnson’s attention to the effects of
sustained aerial attack on Germany’s petroleum facilities late in World War II and
argued “With an understanding that simple analogies are dangerous, I nevertheless
feel it is quite possible the military effects of systematic and sustained bombing of
[petroleum supplies] in North Vietnam may be more prompt and direct than
conventional intelligence analysis would suggest.”  The intelligence analysis in
question indicated that North Vietnam depended so little on petroleum … that
bombing … would not much affect the war in the South or compel North Vietnam
to make peace.  But the Joint Chiefs agreed with Rostow’s analogy, and so the
aerial campaign against North Vietnam’s petroleum was attempted. (Weigley
1973,387)

The bombing campaign eventually failed largely for the reasons suggested in the
deductive intelligence analysis, but the analogical argument prevailed26.

Schank and Abelson relate sequences—their term is “scripts”—to the fundamental
process of “understanding”

In order to understand the actions that are going on in a given situation, a person
must have been in that situation before.  That is, understanding is knowledge-based.
The actions of others make sense only insofar as they are part of a stored pattern of
a c t i o n s  t h a t  h a v e  b e e n  p r e v i o u s l y  e x p e r i e n c e d .

… Understanding is a process by which people match what they see and hear to
pre-stored grouping of actions that they have already experienced.  New
information is understood in terms of old information.   (Schank and Abelson 1977,
67)

In international politics, understanding includes information that has been learned
or deduced rather than experienced, but the principle is the same.  “Understanding” a
political situation means fitting observed events into a pre-existing event structure.  The

                                                  

26 Rostow seems particularly fond of analogical argument: Wirtz's (1989) discussion of analogies in the
Vietnam War opens with a discussion of Rostow's approval of a memo comparing North Vietnam in 1967
with the American Confederacy in 1863-64.  Majeski and Sylvan's extensive research on Rostow
emphasizes his use of rules and heuristics, but many of those rules were complex scripts based on historical
analogies.
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analyst’s “intuitive feel” is simply the subcognitive ability to match a set of observed
events to sequences he or she already knows by using substitution principles.

Stories are also a means of inferring “motive”:  A motive is the end point of a
sequence.  Associated with the motive is a series of sequences that terminating in a
specific end-point.27   Motive sequences can be used either inductively or deductively.
Inductively, one has a set of facts that could match any of several different end points
(e.g. is an arms control proposal intended to reduce arms or to weaken oneself prior to an
opponent initiating hostilities?); the decision-maker then searches for information to
differentiate between those sequences.  Deductively, an end point can be assumed and
one can seek to differentiate between the various paths that might be used to reach the
end point and thwart them (e.g. you know an opponent is trying to weaken your alliances,
but how? ).  In both instances the use of stories dramatically reduces the information-
processing task by identifying only those items of information necessary for prediction.

Finally, stories provide means of correcting for noise and missing information.
This is particularly important in the political environment that is subject to low
information and deliberate deception.  Pennington and Hastie observed in an
experimental study of individuals summarizing trial evidence:

…spontaneous interview protocols do exhibit story structures.  … Juror’s stories
were not simple lists of evidence.  They always contained most components of the
episode schema (initiating events, psychological and physical states, goals, actions
and consequences) in appropriate causal relations.  Jurors typically inferred missing
components for these structures when they were not contained in direct testimony
at trial.  Evidence not related to a story of what happened was systematically
deleted from discussion. (Pennington and Hastie 1986,252; quoted in Boynton
1991).

Stories carry complex information in a compact and easily usable form.
The most widespread application of stories in political analysis is found in the use

of history or precedent.28  In foreign policy discourse, precedent is most likely

                                                  

27 One of the purposes of myth is to provide idealized sequences that terminate in a known end-point so
that the early parts of the sequence can be used to infer motive.  "Little Red Riding Hood" is a complex
sequence carrying the messages "Obey your mother; don't talk to strangers; and don't wander about in the
woods"; MacBeth and Hamlet carry the message "Those of avarice and deceit will come to no good in the
end."  Brunvald's study of urban legends finds that they "repeatedly [have] the quintessential urban legend
twist—the poetic justice, or got-what-he-(or she)-deserves twist" (Brunvald 1984, xiii).  This provides a
deterrent function—"you might think you're smart but God'll get you…"—that undoubtedly accounts for
the prevalence of urban legends: They provide a message we to wish passed along to others.

Less subtly, in preliterate societies where knowledge is transmitted in part by itinerant storytellers, one
typically finds an ample supply of legends where an apparently helpless old wanderer is a hero, god or ruler
in disguise.  Ulysses' return in the Odyssey is perhaps the most familiar in early Western culture; Luke
24:13-35 provides a variant in the Christian tradition.  Such stories have clear and immediate utility to the
story-teller.

28 The arguments for precedent from a computational modeling perspective are reviewed in Mallery and
Hurwitz (1987), Anderson (1981) and Mefford (1991).  A variety precedent-based models were developed
in a series of papers by Alker and others during the 1970s (Alker et al 1972, 1977, 1980).  The models also
are closely related theoretically, though not necessary in technique, to an extensive body of AI research on
analogical reasoning (see Prieditis 1987) and case-based reasoning (see Kolodner 1988,1993; Mefford
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encountered as a justification for action—in other words, it is invoked as an empirical
regularity.  A precedent such as “Munich”, “Pearl Harbor” or “Vietnam” would be
invoked as something to be avoided, not to be implemented29.  The precedents used
repeatedly are incorporated into the standard operating procedures of the organization
and in doing so become rules.

In contrast, in legal reasoning and in much of the case-based reasoning literature a
precedent is a plan, a series of actions that should be taken.  In this sense a precedent is
merely the complex antecedent clause of an if...then clause with a complex consequent.
These two uses of precedent are different but not incompatible: over time, the use of
precedents as plans causes them to become empirical regularities.  The utility of
precedent is an empirical issue: pattern recognition is very effective in chess but useless
in Lotto.  Decision-makers may study the politics of the Napoleonic period for guidance
on contemporary international affairs; they do not accord the same respect to Napoleonic
surgical techniques or gunnery practices.

Organizations and Rules
One man alone can be pretty dumb sometimes, but for real bona fide stupidity there
ain’t nothing can beat teamwork.

Edward Abbey

International behavior is primarily the product of bureaucracies rather than
individuals.  An individual may influence the direction of a foreign policy, but the
implementation is still left to bureaucracies.30  In everyday language this organizational
interaction is simplified—“Hitler decided to attack Poland”—but in virtually all cases
(and certainly in systems which have a strong democratic and/or bureaucratic component)
individuals are constrained to choose from a very small set of options that have been
made available through a bureaucracy.  While the “Great Man” [sic] model attempts to

                                                                                                                                            
1991).  Khong (1992) provides an extensive analysis of the use of analogy in foreign policy decision-
making, based primarily on the Vietnam decisions.  Neustadt and May (1986) provide an elaborate set of
general guidelines and heuristics on the practical use of history and analogy for decision-makers, lavishly
illustrated with examples from the post-WWII period.

29 This can occur for normative as well as pragmatic reasons: for example Allison emphasizes the strong
negative impact of the Pearl Harbor analogy on Robert Kennedy's assessment of the option of bombing
Cuba during the Cuban Missile Crisis:

"I now know how Tojo felt when he was planning Pearl Harbor" Kennedy wrote during an ExComm
meeting, and he would later write "America's traditions and history would not permit … advocating a
surprise attack by a very large nation against a very small one". (Allison 1971,197).

30 The focus here is on the Weberian "rational-legal" bureaucracy that dominates foreign policy decision-
making structures in the modern era.  This applies even in "revolutionary" situations:  For example, the
taking of American hostages in Iran during 1979-80 was outside the normal range of international behavior,
but the attempts at resolving that issue were very much normal, including the unsuccessful rescue attempt
and the eventually successful mediation by Algeria and other international agents.  Similarly, the rhetoric
surrounding the Iran-Iraq war and the personal animosity between Saddam Hussein and Khomeini provided
personalistic aspects to that conflict—as would the animosity between Saddam Hussein and George Bush
in 1990-91— but the  military interactions were bureaucratically quite conventional.
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allow the cognitive processing of an individual replace bureaucratic decision-making in
an organization, the individual is still dependent on an organization to supply (and filter)
information and implement decisions.  Behind every Great Man is a well-entrenched
bureaucracy pleased to have someone else taking responsibility.

The shift from individual to organizational information processing produces a
paradox: An organization, in order to obtain the capacity for large-scale information
acquisition and policy implementation, must make substantial compromises in its
information processing capabilities.  Specifically, an organization must work within the
bandwidth constraints of language, and it cannot directly invoke associative recall.  This
substantially reduces the dimensionality of the state-space used to describe the problems
being considered.  Sylvan, Majeski and Milliken note in their study of U.S. decision-
making concerning Vietnam:

[W]e found, at least for the troops decisions, that at any given time there were three
policy lines: a main one and two subsidiary ones.  Other policy decisions were of
course put forward, and on rare occasions they were discussed at high levels; but as
a general rule, the president and his top advisers simply did not consider more than
three principal lines at a time (Sylvan, Majeski and Milliken 1991,333)

Because of these factors—and consistent with Purkitt’s (1991) discussion of the
limitations of working versus long-term memory—the knowledge used by an
organization is usually simpler than that used by the individuals who comprise it.

The sequential processing of if...then rules can be done within the constraints of
working memory so this, rather than associative pattern recognition, is the preferred
mode of information processing in organizations.  In much of their behavior, the
bureaucracies are not acting as if they followed rules; they are instead explicitly following
rules and are expected to do so, rule-following being a sine qua non of bureaucratic
behavior.31  This section will focus on the interaction between the explicit rules of an
organization and the pattern recognition used by its human components; a detailed
discussion of use of rules to model organizational behavior will be deferred to Chapter 4.

Argument, Understanding and Tacit Information
Some of the early computational modeling projects assumed that due to the rule-

oriented nature of bureaucracies, one would be able systematically to extract an
organizations rules and precedents from a sufficient quantity of debates, formal
regulations and internal memoranda, and from these rules one could simulate much of the
decision-making process.  Based on the subsequent success of rule-based systems in
replacing some routine managerial decision-making in business, this was not an
unreasonable proposition.  In fact, had the computational modeling projects focused on
routine State Department activities, such as the processing of visa requests or arranging
golf games for visiting members of Congress, the approach might have worked.

Instead, because an extensive set of documentary evidence was required, the typical
focus of these projects was on critical decisions such as Vietnam.  In crisis decisions

                                                  

31  Thorough treatments of the role of rules and heuristics can also be found in Majeski (1987), Mefford
(1991), and Sylvan, Goel and Chandrasekran (1990); the approach also permeates the Kahneman, Slovic
and Tversky research.
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explicit rules proved insufficient.  Sylvan and Majeski’s study of Vietnam decision-
making quickly encountered the problem of “tacitness” and “tacit cultural rules” where
many of the key elements required to understand the bureaucratic debate were absent
from the recorded discourse:

For example, the first few months of 1961 were marked by the eruption of a non-
Vietnamese war in Indochina.  The country, of course, was Laos, a subject on
which Kennedy’s advisers spent literally hundreds of hours.  Yet the Vietnam
documents of that time barely mention Laos.  It is only after the crisis fades that
explicit references to the Laos settlement are made, particularly in the form of
‘lessons’.  ... Our heuristics reflect very little of situation-specific interpretations,
and this means we miss many of the allusions and other references in any given
text. (Sylvan and Majeski 1986,11)

For example, fundamental theme of anti-communism was never verbalized because
it was a shared assumption:

Most people employ a host of common sense rules for getting along in daily life;
only a small handful of these will ever be verbalized.  In part, this is because of
their obviousness; in part, due to the embarrassment that would attend someone
who reminded others about them. … If rules are shared in the [bureaucratic] culture
as a whole (e.g. communism is bad), they will never (or almost never) be made
explicit. (Sylvan and Majeski 1986,10)

Boynton noted a similar problem in trying to formalize the construction of
narratives in Congressional hearings on the 1983-84 Lebanon policy:

The apparent reason a narrative account was not constructed was that members of
the committee knew what had happened.  They had been arguing about Lebanon
policy for well over a year, and they could take the knowledge of the events for
granted. … My tentative conclusion is that narrative reconstruction is a fallback
mode of reasoning.  When the subject is well known [it] is not necessary (Boynton
n.d.,8)

Because understanding involves matching observed events to a pattern, the function
of political discourse is to provide sufficient information—in the forms of declarative
knowledge, event sequences and substitution principles—to cause the audience to
understand (i.e. pattern match) the situation in the same manner that the individual
transmitting the information understands it.  Political information transfer attempts to
stimulate pattern recognition in the mind of the audience and thereby trigger a desired
behavior.  This process can occur between competing organizations as well as within
them: Signaling in a conflict situation involves exchanging messages with an opponent in
an attempt to get the opponent to take, or refrain from taking, certain actions.32

In an organization, rules are invoked by patterns.  When a pattern matches the
antecedent of a rule, it directly or indirectly causes the implementation of policy
responses, for example the deployment of military units, granting of aid or lifting of trade

                                                  

32 As noted in Chapter 7, a plan of strategic deception does this through the systematic use of false
information that simulates a pattern of events that does not actually exist.
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sanctions.  The patterns conveyed in political discourse are keys attempting to fit a
lock,33 and the response may occur directly or as one part of a chain of rules.

Heuristics
Cyert and March’s (1963) classic, A Behavioral Theory of the Firm, examines

organizations as information processors.  Almost three decades old, this work constructs
and tests formal models that nowadays would be considered expert systems or rule based
models.34  Cyert and March emphasize that rules can take a variety of forms, including,
“rules of thumb”, professional expertise (e.g. rules used by a carpenter), rules for the
distribution and storage of information (e.g. memos, reports and records), legal
constraints and requirements, contractual agreements (e.g. union work rules), “common
industry practice”, “tradition” and so forth.  In the international political arena, “regimes”
provide similar sets of expectations.

Because international politics is a complex problem-solving environment,
heuristics—simple rules used to partially solve complex problems—are of particular
importance.  Purkitt observes:

To cope with limited cognitive capabilities, individuals selectively process
information and use a limited number of heuristics or mental rules of thumb as
cognitive aids in their effort to manage information.  This apparently universal
reliance on intuitive heuristics to solve all types of problems seems to be due to the
need to compensate for the limitations of short-term memory and information
processing capabilities.  By using intuitive mental heuristics, people can develop a
problem attack plan which permits them to develop a subjectively acceptable
problem solution. (Purkitt 1991,43)

Heuristics are frequently very specific; their power comes from their quantity.
Most estimates put the number of heuristics used by expert human problem-solvers in the
tens of thousands.

Majeski provides an example of four such heuristics on U.S. decisions to use
military force

A. Increasing military involvement is possible if such action does not lead to a losing
military situation.

B. If acts are interpreted as a case of aggression, then steps must be taken to halt such
behavior.

                                                  

33 With respect to finding political analogies for the three biological information processing
systems—genetic, neural and immune—this process is the immune.  The immune system responds to
harmful foreign proteins in the body by first be recognizing them as harmful.  This is done by anti-bodies,
which are highly differentiated to match specific proteins characteristic of various potential threats.  Once
an antibody has identified an intruder, the immune systems goes into action and destroys it.  In a similar
fashion, rules are solutions waiting around for problems to fit their antecedent clauses; when triggered they
provide a specific response to the problem.

34 Compare, for example, the models in chapters 7 and 8 of Cyert and March with Kaw (1989) or Tanaka
(1984).  Cyert and March were dealing with economic organizations but the approach has been very
influential in studying foreign policy, particularly through Allison (1971).  Sniderman, Brody and Tetlock
(1991) provide an extended discussion of the role of heuristics in mass decision-making.
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C. Start at the most minimal [force] level necessary, and progress step by step openly
when a step has not succeeded in achieving the objective.

D. The initiation or escalation of military action requires justification. (Majeski
1987,74-80)

Rational choice and balance of power theories are both heuristics in the sense that
they are relatively simple; they come with a complex set of side-conditions; and they are
intended as general rules to guide decision-making, without providing a complete
specification of actions to be taken.  To the extent that the decision-makers share an
heuristic in a political system—for example balance of power in 19th century European
diplomacy or the Chicken game in 20th century nuclear deterrence—it reduces
uncertainty and becomes self-validating.

When conflicts do occur among logically inconsistent heuristics or the heuristics
fail to accomplish the desired results, a problem is “kicked upstairs” and resolved
laboriously through serial processing in an individual, or in an organization becomes a
“crisis” requiring managerial intervention.  The decisions we are most aware of involve
serial processing, which is conscious, and crisis decision making, which is both conscious
and dramatic. However, most information processing most of the time is actually done by
these lower-level methods that go unnoticed so long as they are smoothly functioning.

Learning and Adaptation
The foundations of economic analysis since the 1870s have been the rationality of
individual behavior and the coordination of individual decisions through prices
and markets.  There has been a steady erosion of these viewpoints [and now] the
rationality of individual behavior is also coming under attack. ... What I foresee is
a gradual systematization of dynamic adjustment patterns both at the level of
individual behavior and at the level of interactions among economic agents. ... For
a century, some economists have maintained that biological evolution is a more
appropriate paradigm for economics than equilibrium models analogous to
mechanics.

Kenneth J. Arrow
Science,17 March 1995, pg. 1617

Learning and adaptation are such basic human activities that they have been taken
for granted in much of the informal bureaucratic politics literature.  These are somewhat
distinct activities.  Learning primarily involves the acquisition of static
information—declarative knowledge and stories—that have the potential for being used
in problem solving.  Adaptation involves the dynamic development of rules and
substitution principles that determine when to use the information.  Conceptually,
learning occurs with the knowledge base, adaptation occurs with the pattern recognition
mechanism.35  In practice, it is difficult to disentangle the two because of the

                                                  

35International relations, and political science generally, usually instructs using historical examples
followed by principles.  This contrasts to the practice in axiomatic knowledge domains (mathematics,
physics, statistics microeconomics) of teaching general principles followed by idealized examples.
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subcognitive nature of pattern recognition in human decision-making, but in a
computational model the two processes are usually quite distinct.

Decision makers use the “lessons of the past” to formulate policy, continually
modifying those policies depending on their success or failure.36  For example, the CIA
overthrow of Mossadegh in Iran in 1953 was used as a precedent for the overthrow of
Arbenz in Guatemala in 1954; those successful interventions were then used as the model
for the ill-fated Bay of Pigs invasion against Castro in 1961.  The failure at the Bay of
Pigs was attributed in part to the low level of U.S. military support; this was corrected by
the massive use of US troops in invading the Dominican Republic in 1965 and Grenada
in 1983.

When the CIA planned the Bay of Pigs invasion, it was considered safe because of
its similarity to the earlier successes in Iran and Guatemala.  This pattern match was, in
retrospect, incorrect.  Had the Marine Corps been involved in the planning, analogies
might have been made instead to the problems of amphibious landings encountered in
WWII and this analogy would have led to greater skepticism about the operation, or at
least better preparation.   In this framework, the knowledge base used by the CIA was
deficient because it contained “overthrow” precedents to the exclusion of “invasion”
precedents.

Alternatively, one could argue that the Bay of Pigs situation had been incorrectly
understood because important variables were not considered: the pattern matching
process was in error.  If that process indicates that two things should match but they
produce different outcomes, the organization should change the matching criteria.
Arguably this occurred historically: the failure at the Bay of Pigs was attributed to the
lack of sufficient force and the lack of a clear United States commitment, and therefore
the next two US interventions in the Third World—the Dominican Republic and
Vietnam—involved the overt use of large numbers of troops, quite possibly with WWII,
Korea and NATO in mind as precedents.

Cyert and March note that history of any organization involves adaptation to
improve performance:.

In order to examine the major attributes of short-run adaptation … we need to take
a new look at the … ways in which [standard operating] procedures change.
Standard operating procedures are the memory of an organization.  Like any other
memory or learned behavior, [they] change over time at varying rates.  Some rules
seem to change frequently; others appear to have been substantially unchanged for
as long as the organization has existed. … When we ignore adaptation with respect
to decision rules, we are simply saying that relative to the time span being
considered those rules are given. (Cyert and March 1963, 101)

An individual learns patterns by observing sets of behaviors and classifying them
as “I’ve seen this before” or “I’ve not seen this before”.  Sets of behaviors previously
encountered reinforce existing patterns—they provides evidence that the pattern is

                                                                                                                                            
Political science uses the pedagogical principles of second language acquisition rather than mathematics.
The popular case study approach in addition combines the acquisition of static information with the
refinement of pattern recognition.

36 See for example the discussions in May 1973; Neustadt and May 1986; Vertzberger 1990; and Khong
1992.
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common and therefore worthy of attention.  Frequent patterns can be generalized and
stored as templates to avoid retaining redundant information.

Novel sets of behaviors, in contrast, are provisionally added to memory.  If they are
not reinforced, they are eventually discarded as erroneous or statistically unlikely; they
are retained if reinforced.37  Finally, if observed behavior appears to match an existing
pattern but further experience shows that the pattern predicted a different outcome than
actually occurred, then either the matching criteria are changed or one seeks additional
information that would have differentiated the two patterns.  Schematically, basic
approach to adaptation is shown in Figure 3.1.

Most patterns of international behavior are acquired through the study of history or
by observing the contemporary experience of others, not through personal experience.
International politics changes very slowly, providing limited new information, and is a
risky environment.  All organizations would prefer that patterns involving highly
undesirable outcomes—for example losing a war—be learned indirectly rather than from
experience.  The prerequisites of professional diplomacy—typically graduate-level
training in some combination of history, political science and economics—insure that
general patterns of historical and contemporary political behavior have been learned
before an individual even joins a foreign policy bureaucracy; the organization then
supplements these with specialized courses of study, “war stories”, formal organizational
history, shared counterfactuals and so forth.

Problem

Search memory for 
appropriate rules and 

precedents 

Yes

No

Reinforce 
knowledge 
used to solve 
problem

Change rules, 
precedents or 
pattern matching 
criteria 

Solution

Was the 
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Pattern matching 
criteria

Rules Precedents

Implementation

Figure 3.1.  Organizational Adaptation

                                                  

37 For example the US intervention in Lebanon in 1958 does not appear to have set an important precedent
for the United States, though comparable interventions in Africa were quite common for Britain and France
in the 1960s and 1970s.
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Sources of Knowledge
Experience

Direct experience is the source of most of our expectations about human behavior:
lessons from this source are intensely and sometimes painfully acquired from infancy
onward.  Experience plays a major role in understanding such politically relevant
individual psychological states as fear, pride,  and greed.  Considerable direct experience
is also acquired in the mundane day-to-day operation of a foreign policy bureaucracy and
the normal relations between states.

In international politics, the role of experience is limited because the major events
that capture the attention of theorists and are the focus of long-term planning are rare.
Few states experience a major war more often than once every two decades; crises that
might involve war are also fairly infrequent; and major international agreements such as
SALT and GATT occur only once every decade or so.

History

In the absence of direct experience, foreign policy experts spend a substantial
amount of time studying history, and classical writers on international relations
continually admonish them to do so.38  This history is typically partitioned into
autonomous event sequences and stories—for example the 1914 crisis and the Cuban
missile crisis—that provide archetypal patterns of behavior.

History enters the foreign policy community in two ways.  The first is through
formal book learning—foreign policy experts rarely have less formal education than an
M.A. in the humanities or social sciences, and Ph.D.s are not uncommon.  The second
source is organizational memory consisting of the event sequences considered important
within the organization.  These become acceptable analogies that will motivate action in
the organization.  History is reinterpreted over time, and the lessons differ with
individuals.  For Ronald Reagan, the United States involvement in Vietnam was a
glorious, selfless, and humanitarian endeavor; this interpretation was not universally
shared in either the foreign policy community or the military.

Trauma.

History is sampled selectively.  While a sequence of events could probably be
found somewhere in history to justify almost any course of action, such scattered
applications of history are rarely observed.  Instead, certain historical sequences are used
much more commonly than others.

In the public justification of policies, the most frequently invoked historical events
tend to be traumatic.  A traumatic sequence that vaguely fits a situation will supersede a
less traumatic sequence that fits the situation more closely, particularly in public debate.
This could be due either to the fact that the general public only remembers traumatic
historical events, or to the fact that traumatic events invoke sequences leading to highly
undesirable outcomes.  For example, the two most important “lessons” of history for the
WWII generation of US foreign policy analysts were “Pearl Harbor” and “Munich”; the

                                                  

38 Gaddis (1992/93) presents an excellent debate of the merits of the historical and behavioral approaches;
Gaddis (1987) is a more typical traditionalist critique.
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“lessons” for Soviet analysts of the same period appear to have been “Hitler” (a variation
on the earlier lesson “Napoleon”) and “Stalingrad” (Western powers can not be trusted to
aid to the Soviet Union even when they share common interests).

Myth and Counterfactuals

History is not the sole source of patterns of behavior: counterfactuals are also
important and perhaps more so in rhetorical situations.  Myths, children’s stories and
fairy tales are the archetypes of counterfactual conveyors of social lessons.  For example,
the most widespread counterfactual in United States popular history is probably the
quick-draw shoot-out at high noon between the good guy and the bad guy.  Western
writers from Mark Twain to Louis L’Amour consistently failed to find any original
instances of this behavior in American history:39 it is a total fabrication of nineteenth
century popular fiction.  Yet this image is popularly invoked in editorials and editorial
cartoons to justify the US policy position in militarized crises such as the invasion of
Grenada in 1983, the bombing of Libya in 1986, the invasion of Panama in 1989 and
Operation Desert Storm in 1991.

Myths vary in their message.  The lesson of both the I l l iad and the
Odyssey—stories known to every educated person in Europe and North America—is
rugged individualism.  Much of the Illiad focuses on Achilles, a petulant and egocentric,
but tolerated, jerk.  In the Odyssey, Ulysses returns home to triumph, although all of his
companions perish.  In contrast, the lesson of the great South Asian epic, The Ramayana,
is one of the loyalty of a leader to his wife, his family and his followers.  The underlying
messages of these epics different substantially, and such differences could have profound
implications for the types of behavior that might be anticipated in a political interaction.

Probably the most important, and most easily justified, application of
counterfactuals has been in the analysis of nuclear stability.  The international system has
had no experience with the outbreak of war between two nuclear powers, and the
unilateral use of nuclear weapons at the end of WWII provided little useful guidance on
the issue.  Instead, the entire policy analysis on such major issues as the deployment of
anti-missile defenses and multiple warhead missiles was done with theory, analogies and
counterfactuals.40

One interesting offshoot of these counterfactuals in foreign policy analysis was the
development of an extensive popular literature on the outbreak of nuclear war.  This was
initially apocalyptic, such as On the Beach (Shute 1957), Failsafe (Burdick and Wheeler
1962) and the film Dr. Strangelove.  Later a popular literature evolved emphasizing the
technical sophistication of the non-nuclear weapons and the organizational control of the
NATO and WTO militaries, and promised large-scale European war without nuclear
catastrophe: Sir John Hackett’s The Third World War (1978) and Tom Clancy’s Red
Storm Rising (1986) are the two best-selling examples of this genres.  Life imitated art
when Vice President Quayle used Red Storm Rising to justify the military effectiveness

                                                  

39 That is, instances of shoot-outs that were not themselves inspired by the pulp fiction (notably Ned
Buntline) of the day; Twain mentions several such instances in Roughing It.

40 See Fearon (1991) for a general discussion; Gaddis (1990) provides a succinct summary of these
arguments based on a conference entitled "Nuclear History and the Use of Counterfactuals" with particular
emphasis on Elster's (1978) analysis.
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of “stealth technology”.  While Quayle’s use of fiction was ridiculed, from a strictly
logical perspective it was little different from the formal arguments underlying the
nuclear weapons programs of the superpowers.

 To be an effective player in a bureaucracy, one must internalize and effectively use
the organization’s counterfactuals.  Counterfactuals justify and reify existing
organizational norms and procedures, they direct debate and hence smooth the operation
of the bureaucracy, and they provide a means of minimizing the effectiveness of
“outsiders” who have not mastered the internal culture.

Culture

Closely related to the issue of myth is that of culture.  From the perspective of
knowledge representation, culture is a series of expected behavioral sequences, both
social and political.  As noted above, some of these expectations are explicitly learned
through myth or history, but  a myriad of additional patterns are acquired from childhood
onward.

To take a simple nonpolitical example, in some cultures, a polite business
conversation almost always begins with an inquiry about the other’s family; not asking
would be considered rude.  In other cultures, the topic usually would not be mentioned in
a business conversations.  In still other cultures, typically those with high infant mortality
rates, asking about family is considered extremely impolite.  This is only one bit of
cultural knowledge; a culture contains thousands.

“Culture shock” occurs when one is surrounded by unfamiliar social patterns.41

While this is usually associated with a shift in language, it can just as easily occur simply
through a shift in social environment: most academics, for example, would probably feel
exceedingly uncomfortable at a meeting of unemployed autoworkers, unless they
happened to be studying autoworkers and knew what behaviors were expected.  We
apparently monitor the social environment subcognitively, and when observed behaviors
deviate sufficiently from what we expect, a signal is triggered that says “let’s get out of
here”.  Over time, the new patterns can be learned and the signal is suppressed.

As discussed above, organizational culture is particularly important.  Sylvan and
Majeski make this point with respect to bureaucratic decision making:

The rules in which we are interested are most usefully characterized as cultural.
Specifically, the rules represent the everyday, common sense understanding of the
member of a particular subculture: high bureaucratic officials in mid-twentieth
century America.  Those officials know, as a matter of routine, all matter of things
about the way their world works: these vary from methods to ingratiate oneself
with one’s boss to an understanding that the Russians are obviously an enemy who
has to be watched very carefully.  It is this taken-for-granted quality of cultural
rules that many observers in international relations find so irksome.

Insofar as the rules we are studying represent the common sense knowledge of
policy makers, the rules will tend to be tacit.  … In general, we can say that if rules
are justificatory (e.g. making a legal case) they will be often be made explicit.  If

                                                  

41 For the strict positivist who argues that culture shock is a phenomenon we should not admit into
scientific discourse, I can provide a long and quite interesting list of places where it can be intersubjectively
experienced…
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rules are very general (e.g., what are our aims in Southeast Asia), they will be made
explicit during crises.  If rules are widely shared in the culture as a whole (e.g.
communism is bad), they will never (or almost never) be made explicit.  (Sylvan
and Majeski 1985, 16-18)

Illusion
The human brain is very good at using patterns to filling in gaps in observations.

This is very useful—in fact essential—when dealing with noisy stimuli, but it also means
that one is likely to learn things that are not true.  Vertzberger notes

Issues that are uppermost in the information processor’s mind have a priming effect
and exert disproportionate influence on the interpretation of incoming information,
biasing it in terms of these particular concerns even if the bias is not justified.

The complexity of integrating multiple indicators into a unitary assessment of the
situation (e.g. the adversary’s intentions) encourages a motivational bias towards
deriving a single indicator from one’s conceptual framework.  [With this
simplification] not only does the whole process of searching for and evaluating
information become simplified, but the probability that multiple indicators will
produce inconsistency … is preempted and avoided as well (Vertzberger 1990,66-
67)

Illusion can also arise from the hierarchical structure of memory.  For example, if
one mentally visualizes a zebra, one seems to have has a very clear image of the animal.
The mental image is sufficient to distinguish a zebra from a horse, or to infer the missing
parts of a zebra partially blocked by a tree, or to identify a zebra distorted by fog, shadow
or rain.  The pattern appears to be very complete and robust.  However, its incomplete
nature is apparent when more detailed questions are asked: for example, how many
stripes cross the zebra’s back; where on the zebra are the stripes horizontal?

This same type of illusion occurs with political knowledge.  For example, students
are usually astonished to find that during the 1980s China, considered a military
“superpower”, had a military budget less than that of Japan, usually considered to be
militarily insignificant.42  This could be true even for experienced analysts; Laurance
reports an experiment where:

in-house military analysts were used to help create a set of country scores for the
military capability (naval in this case) of various LDCs.  When we validated these
scores with a set of outside experts, most were surprised that the PRC had scored so
high.  Upon reflection we realized that the high scores were a function of the
expectation that the PRC would be very capable, since at the time they were in the
‘communist enemy’ category.  In addition the PRC was high on the collection and
analysis priorities list of the intelligence community.  More information existed on
the PRC navy, compared to say Malaysia, Singapore and India (Laurance
1990,125)

                                                  

42 For example, ACDA reports China's 1988 military budget as $20-billion; Japan's as $24-billion (ACDA
1989).  While this calculation may involve some dubious use of exchange rates, Japan was still outspending
China by around a factor of ten in terms of military expenditure per capita.
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This illusory aspect of pattern recognition may account for some of the difficulty in
locating precise historical precedents in political arguments.  When a human processes a
political argument, a single historical precedent—for example Munich—will
associatively activate a complex story whose details are filled in by memory.  From a
human standpoint, the precedent was an important part of the argument.  Objectively,
however, the historical reference is only a small part of the text of the argument and a
computer, without associative recall, finds little use of precedent.

Adaptation
A major focus in Cyert and March is organizational adaptation:

Without denying the substantial abilities of organizations as problem-solving and
decision-making institutions, … a business firm is constrained by the uncertainty of
its environment, the problems of maintaining a viable coalition, and the limitations
on its capacity as a system for assembling, storing and utilizing information.  As a
result, the theory outlined in this volume characterizes the firm as an adaptively
rational system rather than an omnisciently rational system. (Cyert and March
1963,99; italics in the original).

The basic adaptive mechanism proposed by Cyert and March is corrective feedback
under satisficing norms, a process similar to that in Figure 3.2.  If the organization’s
output is approximately what it desires, only marginal changes to rules occur.  Rules
change when policies fail due to a new environment, stochastic “bad luck”43 or when the
rules never worked in the first place.  The basic process of adaptation is “bureaucracies
do not make the same big mistake twice”.

The second general characteristic of adaptation is the reapplication of solutions that
worked in the past: in the rule-based JESSE simulation (Sylvan, Goel and
Chandrasekaran 1991) this is called “compiled reasoning”.  Regularized behaviors evolve
within an organization through an adaptive process of mutation and selection, and hence
there will be common roots to apparently disparate behaviors.  Even the most cursory
examination of international law shows an evolutionary process at work: compare, for
example, international maritime and international aviation law, or international postal law
and international telecommunications law.  Successful new laws, often as not, are
modifications of existing laws, rather than created de novo, and given the choice between
two equally effective solutions to a problem, organizations will gravitate to the more
familiar.

Because of this continual adaptation, the interaction effects of the rules of a
complex system are effectively unknown.  Adaptation creates a system that is not
necessarily logically consistent, nor is its behavior easily predictable in all circumstances.
In a well-functioning bureaucracy in a stable environment, the same input should produce
the same output each time, and the more frequently an organization is confronted with a
particular situation, the more efficient its response.  However, when an organization is
confronted with a novel input, its response may be both inefficient and unpredictable,
which has obvious implications for crisis behavior.
                                                  

43For example, one of Cyert and March's case studies involved rule changes initiated after a fatal accident
involving antiquated machine controls.
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Adaptation provides “path dependence”: International politics is not like a game of
chess where future plays can be evaluated solely on the basis of the current board
position.  In a competitive situation, the fact that a clever set of actions has provided
outstanding gains over an opponent is a good reason to assume that the same set of
actions will not produce that result the second time around.44  Van Creveld notes that in
war,

...the underlying logic is not linear but paradoxical.  The same action will not
always lead to the same result.  The opposite, indeed, is closer to the truth.  Given
an opponent who is capable of learning, a very real danger exists that an action will
not succeed twice because it has succeeded once. (van Creveld 1991,316)

How a situation came into being may be as important as its static characteristics;
deductive reasoning from first principles alone is not sufficient.

A potential problem in adaptation is the phenomenon of superstitious learning.  As
defined by Lave and March, this occurs in

…situations in which the environment is indifferent to the individual’s  behavior; it
dispenses rewards or punishments on some basis other than a response to his
actions.  The individual, however, will not necessarily be able to detect this
indifference…the individual seems to behave as if he believes the environment is
responsive, and he learns in the usual way.  [This] encompasses some of the most
widespread, and most interesting, forms of human behavior (Lave and March
1975,294)

Superstitious learning is so called because it includes behaviors normally
considered “superstitious”: a person who avoids swamps out of fear of evil spirits will
still obtain the benefits of avoiding contact with malaria-carrying mosquitoes.  But the
phenomenon goes beyond conventional superstition to encompass any situation where
there is a coassociation between a behavior and a positive result without a causal linkage.
As will be noted below, this is particularly problematic in international politics where
feedback is exceedingly slow and there are multiple potential paths of causality.  An
organization may have adapted to an environment that it believes to be firmly under its
control, only to find in a crisis that this control was entirely illusionary.

The supposed dominance of the “China lobby” in the 1950s and 1960s and the
“Israel lobby” in the 1970s and 1980s are two cases in point.  Both were considered at the
time to have established complete control over their respective foreign policy domains
(opposition to recognizing the Communist regime in China; support for Israeli
government policies), yet when directly opposed by a shift in Presidential policy (Nixon

                                                  

44 At appropriately expert levels, this is true even in chess: Rapoport begins Fights, Games and Debates
(1974:2) with a story of how a chessmaster, on discovering a novel variation of a standard opening, waited
ten years before springing it in tournament play, knowing it could be used but once.

The effectiveness of precedent may vary substantially depending on whether one is in a cooperative or
zero-sum situation.  In a zero-sum situation, the fact that something happened once reduces the likelihood
that it will happen again.  In a cooperative situation—for example coordination games—the opposite
occurs: a successful solution provides an anchoring point for other successful solutions.  Failure to
distinguish these two types of cases could cause precedent to look either more or less effective than it
actually is.
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in 1970; Bush on loan guarantees in 1991), they proved completely powerless.  This
result should have been expected given the low salience of either issue to the vast
majority of the electorate, but both groups had persuaded themselves—as well as their
detractors—that policy was under the control of the lobby.

A final problem to learning  by adaptive feedback in international politics is what
March and Olsen (1983) call “the inefficiency of history”: international behavior occurs
with glacial slowness.  Experimentation, the conventional means of increasing feedback,
is all but impossible: A state can experimentally modify its own policies—at some
risk—but not that of its neighbors and not with any controls.  In contrast the Federal
government can try income support in Newark but not in Baltimore and compare the
results.  The “experimental” war, alliance or embargo has undoubtedly occurred, but it
not the norm.

Consequently, feedback on a policy may require years or decades, and by the time
the feedback occurs, the system may have changed sufficiently to invalidate the
appropriateness of the policy to the current environment.  Galbraith somewhat
sarcastically observes:

As practiced, [foreign policy] is for many participants the least demanding
intellectually of public occupations.  That is because, the outcome of almost any
action or series of action being largely unknown, the individual who knows little is
not greatly handicapped as compared with the individual who knows much.
(Galbraith 1984,40)

In the international system, historical anachronisms such as Berlin and Hong Kong
in the 1980s or the Austrian-Hungarian and Ottoman Empires in the 1910s are hardly
atypical.  The international institution of sovereignty reduces feedback to a minimum:
one may engage in foolish behavior for years without penalty so long as one does not
impinge on the affairs of ones neighbors.  When changes finally do occur, they are
frequently the result of a catastrophic transformation of the system such as WWI or
WWII rather than a smooth movement towards an equilibrium.

International Behavior as a Self-Organizing Process
Pattern recognition, rules and adaptive behavior induce regularity in international

behavior.  In essence, those forms of decision-making create a substantial degree of self-
organization so that rule following and pattern recognition are effective decision
strategies in a world of rule-following pattern-recognizers.  Meanwhile, the ill-defined
character of international politics and the high dimensionality of a pattern-based system
reduce the effectiveness of deductive optimization.

This argument will be developed in three parts.  First, individual and organizational
memories change slowly.  Second, information constraints and the necessity of
maintaining collective action coalitions force organizations into regular behaviors.
Finally, adaptive ruled-based systems are usually at local maxima with respect to their
selection of rules, so stable patterns of behavior will be observed for long periods of time.

If, to paraphrase Pope, the proper study of bureaucracies is other bureaucracies,
they will find, to paraphrase Pogo, that we have met the enemy and they are us.  While
bureaucracies are severely constrained in their ability to analyze, they are blessed by the
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fact that their opponents vary little in this regard.  This, in turn, often simplifies behavior
to a mutually agreeable level.45

Memory
The first source of regularity in a system based on pattern recognition is memory.

Individuals and organizations spend a great deal of effort selectively preserving the
records of the past.  In individuals, most of the key patterns of political behavior are
learned relatively early in life—usually before the age of 30—and afterwards change
little except in response to traumatic events.  New experiences build on that base but are
strongly affected by it because individuals are more likely to pay attention to information
consistent with what they already know than they are to novel information.46

The persistence of individual memory has additional implications for
organizational communication: Individuals with similar memories will share greater
amounts of tacit information and therefore will be able to communicate more effectively
with each other than with individuals who do not have those memories.  An outstanding
example of this was found in the “generational politics” that doomed most Communist
regimes by the late 1980s.  The ruling bureaucracies in countries such as the Soviet
Union, China, Albania and East Germany proved completely incapable of transferring
control to people who had not shared their politically formative experience of WWII and
the early Cold War; the hyper-centralized Leninist bureaucracies could not function
without this irreplaceable base of tacit information.47  Ironically, generational memories
also facilitate communication between opposing bureaucracies; the stability of the Cold
War deterrence system and the successful cooperation within the Bretton Woods

                                                  

45Another argument for regularity could be made using a variant on the controversial "anthropic principle"
of cosmology.  The gist of this principle is that the answer to "why do the cosmological physical constants
have values they have?" (e.g. why does water ice float on liquid water, whereas most solids sink in their
liquids, etc.) is "because they've got to be that way for humans to exist to observe them".  Formally,

The observed values of cosmological quantities are not equally probable but they take on values
restricted by the requirement that there exist sites where carbon-based life can evolve and by the
requirement that the universe be old enough for it to have already done so. (Barrow and Tipler 1986,16).

The approach is controversial in cosmology because it is self-referential; any discussion of human behavior
by humans is self-referential, this criticism is less relevant in political science.

 Thus one answer to "why expect regularity in human behavior?" is "because humans are sufficiently
organized ask the question."  In other words, the social behaviors allowing us to create books and
universities and go to conferences require a great deal of regularity and pattern.  Human life will on
occasion be nasty, brutish and short, but it is highly regularized compared to the life of a minnow or an
amoeba.  If we did not have a reasonable expectation that certain behaviors would be rewarded or
reciprocated with some consistency, the social organization required to ask such questions would not be
possible.

46 See Vertzberger (1990,137ff) or Lebow (1981,101ff) for discussions and references to the relevant
literature.

47 Mao recognized this problem explicitly but his solution, the Cultural Revolution, seems to have had the
opposite of its intended effect, producing a traumatized generation intent on rejecting centralized systems
and eager to embrace capitalism.
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international economic system were undoubtedly enhanced by the shared traumas of
WWII and the Great Depression.

The written rules of bureaucracies, which are preserved physically rather than
subcognitively, are potentially immortal and can transcend by decades the circumstances
that created them.48  By selective recruitment and retention of new members, a
bureaucracy can attempt to extend its culture beyond the limits of human mortality.  In
the case of religious organizations, this can be done successfully for centuries, though
most organizations are far less steady.  Because many rules remain unchanged except
when they produce undesirable consequences, a set of rules dealing with an unusual set
of circumstances—for example those invoked in a crisis—may persist for a very long
time without challenge.

Information
The bandwidth limitations on organizational communication restrict the complexity

of interactive political processes over time.  Suppose that an actor transmits a complex
signal in an attempt to trigger a novel pattern of behavior in another actor.  Only part of
the signal invokes a response from the target, so the return signal will be simpler than the
stimulus, and the initiating actor’s bureaucracy will further simplify its response to the
response.  Schematically, the process looks like Figure 3.2, where the segments of the
boxes indicate various parts of the organization; shading indicates whether they are active
in the process, and the lines indicate communication.  Two organizations, interacting over
time, will reach a level of interaction compatible with their information processing
capabilities.  Because those capabilities are relatively limited, the behaviors and hence the
observed patterns will also be limited.  If part of the organization consistently sends
signals that fail to elicit a response, eventually (except in unusual circumstances) that
agency will turn its attention to other issues: It takes two to tango, particularly in
international affairs.

A BA A ABB

Time -->

Figure 3.2.   Interactive Adaptation
                                                  

48 Morgenthau (1973,130) quotes a story related by Bismarck in 1859 of a Russian sentry in St. Petersburg
posted in the middle of a grassy plot to protect the location of a flower admired by Catherine the Great a
century earlier.  Morgenthau, meanwhile, is repeating the story (which sounds suspiciously like an urban
legend...) a century after Bismarck.  University regulations and governance, of course, provide no end of
examples of anachronistic rules and rituals.
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An interesting example of this simplification can be found in the large number of
crises that did not occur during the early Cold War.  The list of areas involved in
persistent military or political conflict is relatively short: Greece, West Berlin, Quemoy
and Matsu, and Korea.  A much larger number of crises did not occur, including a
number that appear more important in geo-strategic terms than the actual crises:

Iran Soviets back down after invasion

Yugoslavia Soviets do not contest anti-Soviet Yugoslavian government
receiving US aid

East Berlin, Hungary US does not contest Soviet use of military force against
anti-Soviet demonstrators

Kuril Islands US and Japan do not contest Soviet occupation

Finland, Austria Neutrality accepted by US, USSR

Tibet Chinese occupation not contested

This list of non-crises could be continued, but it illustrates the basic point is that in
order for a conflict to persist, both parties must continue it.  Perhaps the most striking
example in this list is the contrast between the treatment of Quemoy and Matsu and the
treatment of the Kuril Islands.  Both are strategically insignificant; one was allowed to
become a major crisis; the other never became an issue for the United States, though it
immediately became a major issue for Japan once the Cold War had ended.

Cyert and March note, with considerable empirical support, the importance of
reduction of uncertainty on organizational function:

Organizations avoid uncertainty: (1) They avoid the requirement that they correctly
anticipate events in the distant future by using decision rules emphasizing short-run
reaction to short-run feedback rather than anticipations of long-run uncertain
events. ... (2) They avoid the requirement that they anticipate future reactions of
other parts of their environment by arranging a negotiated environment.  They
impose plans, standard operating procedures, industry tradition, and uncertainty-
absorbing contracts on that environment.  In short, they achieve a reasonably
manageable decision situation by avoiding planning where plans depend on
predictions of uncertain future events and by emphasizing planning where plans
can be made self-confirming through some control device. (Cyert and March 1963,
119)

Competing organizations, over time, will adaptively organize a largely predictable
environment.  Some change occurs but the level of instability is low relative to what it
might be.

Coalition Stability

An additional information constraint occurs due to importance of collective action
in politics.  Coalitions providing collective goods are inherently unstable, since the
individually rational decision is always to defect.  They consequently are difficult to
maintain because of the information cost of determining who is cooperating in the
coalition and the equally heavy cost of sanctioning defectors.  Coalitions, once
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established, are not maintained by a tenuous C/C solution to the N-person iterated
prisoners’ dilemma, but instead by a complex, actively enforced, and culturally
reinforced set of laws, norms and institutions.  In the case of legal systems and
bureaucracies, these are explicitly rule following.  Cultural norms are much less explicit
but still encourage regularity.

Since many of the collective goods provided by political systems—whether
physical (highway systems), service (education) or philosophical (freedom of
religion)—are meaningful only over a long time horizon, political coalitions must remain
stable for long periods in order to be effective.  At any point in time, most of the observed
political coalitions will be those that have successfully evolved mechanisms for
conserving themselves; coalitions that do not solve this problem will be short-lived.

With the increased democratic accountability of foreign policy found in the late
20th century, these constraints extend from the domestic to the international arena.  The
combinatorial alliance switching of the 18th century balance of power systems does not
operate in the democratic systems of today.  This is reflected in the problems that Egypt
experienced in changing a single international link with Israel from hostility to neutrality,
despite Egypt not having an effective elected legislature, having been handsomely
rewarded for its new policy by a superpower, and having a central position within the
Arab world.  In a similar fashion, United States continues to go through periodic
problems in its relations with China that can be traced to the over-stated anti-PRC
policies of the late 1940s.

Optimization
The final argument that might be made against regularity is the issue of

“cleverness”.  The international system consists of individuals who have foresight and
can plan, and they are not restrained, much less condemned, to repeat the past.  Such
planners will constantly seek to exploit weak points in any system of interactions.  Can
these clever planners, using deductive logic, dominate the lazy subcognitive pattern
recognizers and the plodding rule-followers?  In the worst-case scenarios—the Pearl
Harbors of history—the planners win, at least in the short-term.  But this is not the norm
for two reasons.

Dimensionality

The high dimensionality of the state-space of political behavior complicates
deductive optimization.  Deductive reasoning uses the slow, serial processes of working
memory supplemented by memory aids such as written records.  It is literal and explicit
rather than associative and error correcting.  In a situation with low dimensionality,
quality information, and well-understood dynamics, deductive reasoning is very
effective: ask the computers that run your car.  Remove any of those characteristics and
human pattern recognition, with its rapid, associative access to tens of thousands of
patterns, quickly becomes a contender.  An international problem is likely to have high
dimensionality, a great deal of noise, poorly understood dynamics and will usually
involve a situation for which historical precedents exist.  Because political problems are
in addition often ill-defined, deductive reasoning can be at a substantial disadvantage.

The crossover point from deductive to recall-based reasoning may occur  when the
dimension of the state vector of a complex process exceeds the infamous 7±2 item limit
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of working memory (Miller 1956).  While a cleverly deduced behavior can outfox a
pattern recognizer once, this cannot be easily repeated: “Fool me once, shame on you;
fool me twice, shame on me.”  Because pattern recognizers are thoroughly primed
through myth, legends, organizational culture, social play and other pattern-generating
mechanisms, it is difficult to fool them even once.

Local equilibria

The continual adaptation of organizational rules might appear to create a situation
where the behaviors of the system are in constant flux.  In fact, under fairly general
conditions, the opposite will usually be observed because the sets of rules used by various
actors adapt to an equilibrium.

This adaptation deals with rules rather than behaviors.49  The choice of rules
followed in foreign policy is co-adaptive; it is dependent on the choices of other actors in
the system.  Formally, if one is looking at two organizations, one organization can
improve its performance by adjusting the values of the N rules it controls directly, but its
payoff is also dependent on the C parameters of the competing organization:

Organization 1 n11  n12  n13 n14 n15 n16 n17 c11 c12 c13 c14
 ↓ ↓ ↓ ↑ ↑ ↑ ↑

Organization 2 c21 c22 c23 n21 n22 n23 n24 n25 n26 n27 n28

Co-adaptation involves the first organization incrementally modifying n1j in a hill-
climbing fashion but its payoff depends on some of the n2j of the other organization.  This
situation is similar to a two-person game where the row player controls the choice of row
strategies but the payoff is dependent on the choices of both the row and column players.

In order to maintain or improve its level of performance, a co-adapting organization
may be forced to respond to the changes in c1j induced by its opponent’s changes in n2j;
this type of interdependence is routine in international affairs.  This process may
nonetheless have an equilibrium, provided there are points where both organizations are
at local maxima.  In the terminology of Maynard-Smith (Maynard Smith and Price 1973,
Maynard Smith 1982), this is called a Nash equilibrium on a co-adaptive landscape,
because of its similarities to a Nash equilibrium in game theory.50

Kauffman and Levin (1987) show that under a broad set of conditions, there are a
large number of local maxima in these situations and the likelihood of finding a co-
adaptive Nash equilibrium is high.  Kauffman and Levin look at the problem of rule
adaptation as a walk on a “landscape” where each rule corresponds to a point on the
landscape and the “height” of that point is a measure of the utility of the sets of rules.
The object of adaptation is maximizing utility—reaching the highest point on the

                                                  

49 Axelrod's (1984) study of emergent strategies in the iterated Prisoners' Dilemma provides a good
example of co-adaptation in a set of rules; Howard's (1971) metagame approach, where a game is played
over strategies rather than behaviors, is another example.  The analysis presented there is based on work
done in evolutionary biology; see Kaufmann (1993) in addition to the work cited in the text.

50 A co-adaptive Nash equilibrium is local—there are no alternative sets of rules accessible from the
current set without crossing an area of lower fitness, given the current rule choice by the opponent.  In
contrast, a Nash equilibrium in game theory places no restrictions on the proximity of other strategies.
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landscape from a given starting point—and the walk is constrained by allowing only a
limited number of rules to change at any one time.  For example, if an initial rule set is

0 1 0 0 1 1

and movement is constrained to one bit at a time, the system could move to the rule sets

1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1
0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0

but not to any others.
Optimization proceeds by “hill-climbing”: modified rules are maintained only if

they are an improvement over the original.  Under fairly general conditions51, Kauffman
and Levin show

Along an adaptive walk, the expected number of fitter neighbors decreases by half
when each improved variant is found.  That is, the numbers of ways “uphill” is cut
in half at each improvement step (Kauffman 1988,129; italics in original)

The analysis also shows that the number of local maxima in such systems is very
large, these local optima are reached very quickly (that is, after only a few adaptations),
and the choice of the local maximum is strongly dependent on the starting location.

Translated into organizational terms, this means that modifying a small part of the
organizational repertoire will usually fail to improve its performance.  The system has in
all likelihood at a point where the interacting heuristics reinforce each other such that
small changes will be ineffective.  This does not mean, however, that the system is in an
optimal configuration; to the contrary, it is most likely at a local maximum.  Major
successful transitions to equilibria with higher utility are possible but would have to
occur due in one of two circumstances:

First, a major shift could occur through simultaneous change of a number of rules.
In geometrical terms, this means a large “jump” in the Boolean space that, unlike the
small jumps assumed by Kaufmann and Levin, might represent an improvement.  The
reorganization of the European political and economic system at the end of WWII is one
example of such a shift.

Second, change in a single critical rule might trigger additional changes throughout
the system.52  For example, one could argue that the collapse of Communism in Europe
in 1989-1991, as well as the subsequent breakup of the Soviet Union and Yugoslavia,
were all the consequence of a single rule change: the decision, circa 1987, that the Soviet
Union did not need to militarily control Eastern Europe in order to protect itself.  This led
to the renunciation of the Brezhnev Doctrine, which led to the collapse of Communism in
Eastern Europe, which then triggered the dissolution of the Soviet Union itself.
                                                  

51 These apply for an "uncorrelated landscape", which means that values at one point have no relationship
to those of adjacent points, adjacency being defined by the transition constraint.  This is unrealistic by
itself, but as Kauffman and Levin point out, a correlated landscape with large step sizes (i.e. changes in
multiple bits are allowed) is equivalent to an uncorrelated landscape with small step sizes.  The former
situation — correlation but large allowable steps — probably characterizes most organizational choice
situations

52 This argument is pursued in more detail in Kaufmann and Johnsen (1992) and Kaufmann (1993) using a
coevolutionary model more complex than that discussed here.
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These cascades of change cause the actors in the system to go through a period of
unsettled co-adaptation and learning, but the system will eventually settle into a new local
equilibrium and new regularities.  Based on this model, one would expect international
behavior to be characterized by long periods of stability interspersed with short periods
where a number of rules in the system are changing simultaneously.

Because of the lack of information concerning the utility that might result from
changing a set of rules, precedent is a useful guide to decision making in a co-adapting
system.  Ceteris paribus, an organization’s history provides a relatively accurate map of
the value of points on the utility surface that have been visited in the past.  Positive
precedents (e.g. the WWII Allied alliance; Marshall Plan) show points that are desirable;
negative precedents (e.g. the Great Depression, Munich, Vietnam) show points to avoid.
It is generally safer to use known points to set policy rather than trying to explore new
policy combinations, just as it is unwise at night to explore an area characterized by steep
cliffs and an unstable surface with a weak flashlight.

Precedent failures—for example the Bay of Pigs or Lebanon 1982-83—occur when
one follows directions that were plausible at one point on the landscape but inappropriate
for the point that one actually occupies.  Dead reckoning only works if one knows ones
starting point.  Precedent and organizational memory may also restrain the ability to
search the landscape for new rule combinations because of the perceived dangers of
experimentally evaluating certain points.

Conclusion
When, at the end of the last century, Wilhelm Wundt made the first serious attempt
to turn psychology into a science, strangely enough [it] failed to develop along the
lines of biology.  Although Darwin’s teaching was common property by then,
although comparative methods and phylogenetic investigation were established
procedures in all the other life sciences, they were persistently ignored by the new
experimental psychology.  It followed strictly the example of physics where, at the
time, the atomic theory was paramount.

Konrad Lorenz

As noted at the beginning of this chapter, the theory of foreign policy decision-
making developed here is specifically designed for implementation in computational
models.  Its objective is developing a model of politics consistent with human behavior
that can be modeled algorithmically.  Duplicating human understanding is impossible for
the foreseeable future, until we provide machines with the full gamut of human
experience, including adolescence (particularly adolescence...), but predicting human
behavior is quite possible, just as we can predict the behavior of chickens without being
chickens.

Because the modern physical sciences were built on the dual foundations of
mathematics and experimentation with simple systems, the axiomatic/deductive approach
has been enshrined as “scientific”, and most attempts to systematically study political
behavior assume that the axiomatic approach is the ideal.  Axiomatic knowledge is quite
useful in studying systems where the relationships between variables are relatively simple
and information is relatively easy to obtain.  Simple physical systems, simple economic
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relationships and artificial logical constructs such as mathematics and legal systems are
all susceptible to analysis by axiomatic techniques.

Axiomatic knowledge fails, however, in systems that are either too complex to be
modeled deductively or where critical information is missing.  This is true for many
physical and biological systems as well as social systems.  When axiomatic knowledge
fails, humans substitute a combination of pattern recognition and experimentation.  The
cathedral of Notre Dame was built without a theory of gravity; a baseball pitcher can
throw a curve ball without knowledge of second-order differential equations, adenosine
triphosphate or Bernoulli’s law.

As will be discussed in more detail in Chapter 7, in trying to become scientific, the
behavioralist approach to the study of international behavior took as a model the most
abstract of the axiomatic sciences—physics and mathematics.  In the absence of any
major theoretical breakthroughs in the understanding of international behavior per se, this
was probably premature.  The study of international politics deals with human decision-
makers whose pattern recognition abilities are exquisitely developed and who have
constructed a political environment based on those abilities.

Classical international relations theorists such as Waltz and Bull have been
bludgeoning formal modelers with this observation for decades.  The classical criticism
that international affairs are too complex for mechanical models is correct, but the cure
suggested by traditionalists—abandoning formal models for a return to the glory days of
informed intuition—tosses out the baby with the bath.   Information-rich computational
models provide one possibility for systematically modeling international behavior
without sacrificing the advantages of formally specified theories.





Chapter 4
Rule-Based Models

McNamara asked [Chief of Naval Operations George] Anderson what he would do
if a Soviet ship’s captain refused to answer questions about his cargo.  At that point
the Navy man picked up the Manual of Naval Regulations and, waving it in
McNamara’s face, shouted, “It’s all in there.”  To which McNamara replied, “I
don’t give a damn what John Paul Jones would have done.  I want to know what
you are going to do, now.”

Allison 1971,131

Rule-based modeling efforts are currently the most common form of computational
model.  While much of the impetus for their development came from the success of
expert systems in artificial intelligence in the early 1980s, rules are generally well suited
to the study of politics since much of political behavior is explicitly rule-based through
legal and bureaucratic constraints.  Laws and regulations are rules: these may be vague,
and they certainly do not entirely determine behavior, but they constrain it considerably.

Analyses of the Cuban Missile Crisis (Allison 1971) or US involvement in Vietnam
(Gelb and Betts 1979), for example, repeatedly observe that the military options were
limited by the standard operating procedures of the forces involved.  The rules governing
policy are usually complex and idiosyncratic rather than regular and parsimonious: the
response of the United States to the kidnapping of a citizen in Ethiopia is very different
than the response to a kidnapping in Italy.  Systems of informal rules—“regimes” in
international relations terminology (Krasner 1983)—impose additional constraints.  In the
Cuban Missile Crisis, Kennedy did not consider holding the family of the Soviet
ambassador hostage until the missiles were removed but in some earlier periods of
international history—for example relations between the Roman and Persian empires
circa 200 CE—this would have been considered acceptable behavior.

Rule-based models reach inside the “black box” of the classical stimulus-response
model (Snyder, Bruck and Sapin 1969).  These models receive information describing the
international environment, process that information using a set of rules, and produce a
specific response as their output.  While the internal workings of many of these models
are complex, and the models may involve multiple agents or submodels1, their overall
structure generally reduces to that shown in Figure 4.1.

As noted in Chapter 3, the concept of modeling organizational behavior using
logical rules is not new.  Cyert and March (1963,chapters 7 and 8) develop several
models—each involving about 100 rules—of organizational behavior in the
microeconomic domain; cognitive maps of foreign policy (Axelrod 1976) are similar in
structure and level of complexity to rule-based models; and the “operational code”
approach (George 1969) attempts to summarize organizational behavior using a small
number of rules.  The expert systems

                                                  

1 Figure 4.1 is a very simple schematic but it underlies a number of more complicated models that, at first
glance, seem to have little in common.  Compare the diagrams, for example, in Thorson and Sylvan
(1982,551), Hudson (1987,116), Sylvan, Goel and (1991,87), Majeski (1989,134) and Job and Johnson
(1991,228).
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Figure 4.1.  Structure of a Rule-based Model

developed in the 1970s and 1980s differed from these earlier efforts in using
several thousand rules and hundreds of distinct data objects, an increase in complexity of
at least two orders of magnitude.2  This legitimated the idea of modeling behavior using
very large and very specific systems of rules—in contrast to the prevailing norms of
parsimony—as well as contributing the concept of using “knowledge engineering” to
obtain information about rules from subject matter experts.

There are a number of rule-based models in the published international relations
literature; these are listed in Table 4.1.  This table is not comprehensive but includes most
of the published models as of 1994, as well as some papers referring to models that are
still under development3.

                                                  

2Benfer, Brent, and Furbee (1991) provide an excellent text-level introduction to expert systems oriented
toward social science problems; Garson (1990) provides a shorter overview with extensive bibliographical
coverage of both the literature and software.  Buchanan and Shortliffe 1984; Buchanan and Smith 1989;
Giarrantano and Riley 1989; Hashim and Seyer 1987; Hayes-Roth, Waterman, and Lenat 1984; and Klahr
and Waterman 1986 are additional examples of the rather extensive literature on this subject.

Programming forward-chaining rule-based systems is straightforward and can be done in a variety of
languages; Levine, Drang and Edelson 1990; Pederson 1989; and Sawyer and Foster 1986 are text-level
introductions that emphasize basic algorithms.  Backward-chaining systems are typically done in Prolog, a
language designed with that application in mind; Clocksin and Mellish (1981) is the classical introduction
to that language; .

3 In addition to these published models, there are apparently a variety of additional models in the
governmental and classified literature.  However, my impression is that while AI methods have been
extensively incorporated into military simulations and expert systems (see for example Andriole and
Hopple 1988) there has been very little systematic effort in policy simulations.

Virtually all computer simulation invoke rules to some extent but there remains a fairly clear distinction
between numerical and rule-based simulation in terms of the types of variables used.  The two types can be
distinguished by their output: if this is a line, then the simulation is probably numerical; if the output is a
large set of discrete events, it is probably rule-based.  Some hybrids exist—for example Majeski (1989)
predicts budget request levels even though the internal structure of the model is rule-based.
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Table 4.1.  Rule-based Models of International Behavior

Model Foreign Policy Domain Type
Alker and Christensen 1972 UN peacekeeping classification
Bonham and Shapiro 1976 US reactions to Middle East crises cognitive map
Anderson and Thorson 1982 Saudi Arabian foreign policy event driven
Thorson and Sylvan 1982 Cuban missile crisis event driven
Tanaka 1984 Chinese foreign policy classification

(CHINA_WATCHER)
Banerjee 1986 Simulation of social structures multiple agent
Hudson 1987, 1991 Foreign policy reactions event driven
Majeski 1987 War initiation recommendations classification
Schrodt 1988a Simulation of balance of power system multiple agent
Job, Johnson and Selbin 1987US policy towards Central America multiple agent
Kaw 1989 Soviet military intervention classification
Katzenstein 1989 PRC relations with Hong Kong classification
Majeski 1989 US defense budgeting classification
Stewart, Hermann USSR support of Egypt classification
and Hermann 1989
Mills 1990 Sino-Soviet negotiations classification
Job and Johnson 1991 US policy towards Dominican Republic event driven

(UNCLESAM)
Sylvan, Goel and Japanese energy security policy (JESSE) multiple agent
Chandrasekaran 1991
Taber 1992 US policy in Asia (POLI) event driven
Taber and Timpone 1994
Katzenstein 1992 PRC relations with Taiwan multiple agent
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In its simplest form, a rule-based model is just a large set of if…then statements
processed using Boolean logic. For example, a typical rule from Job and Johnson’s
UNCLESAM program has the form

IF US Posture to the Dominican Republic government > 4
and Stability Level >= 5
and Stability Level Change > 0

THEN
Increment US Use of Force Level by 1

The published foreign policy models typically have a few dozen rules. Mefford
(1991) describes in considerable detail rule-based models that go beyond basic if…then
formulations; the boundaries between these and other types of models—for example
case-based reasoning (Kolodner 1988), machine learning systems and to an extent,
expected utility models—are often fuzzy.

Rule-based models involve both procedural knowledge and declarative knowledge.
For example, the rule

IF (X is an ally of Y) AND (Y is attacked by Z) THEN (X will attack Z)

would be procedural knowledge;

USA is an ally of South Korea

is declarative knowledge.  In a model containing this information, the input

South Korea is attacked by North Korea

would generate the response

USA will attack North Korea

The expert systems literature distinguishes between “forward chaining” and
“backward chaining” as a method of logical reasoning.  Forward chaining starts with a set
of characteristics about a situation—a feature vector of independent variables—and
applies these as needed until a conclusion is reached.  The example given above uses
forward chaining, as does the ID3 machine-learning algorithm discussed in Chapter 5.

Backward chaining, in contrast, starts with a possible conclusion—a
hypothesis—and then seeks information that might validate the conclusion.  The
information used could be in the form of other rules whose consequence, if true, would
validate some antecedents of the hypothesis under consideration, or declarative
knowledge in the system, or, in an interactive system, requesting specific additional
information.

Backwards chaining is a much newer technique than forward chaining, and was
adapted from earlier AI work on automated theorem proving.  The technique was
popularized during the early 1980s for several reasons.  First, it was the method used in
MYCIN, a medical diagnosis program that did much to popularize expert systems
(Shortliffe 1976).  Backward chaining shares characteristics with human expert
reasoning: for example a doctor attempting to diagnose a disease will tend to collect
information based on a small number of hypothesized diseases, rather than ordering every
possible test.  Second, backward chaining was embodied in the PROLOG programming
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language, which was widely publicized through the [ultimately unsuccessful...] Japanese
“Fifth Generation” AI project (Feigenbaum and McCorduck 1983).  Third, backward
chaining lends itself easily to providing explanations as to why information is being
requested, since the backwards-chaining algorithm is pursuing an identifiable line of
inquiry that ends with a specific solution.

Backwards chaining has obvious applications in political analysis.  For example, an
analyst studying peasant insurgency in the southern Philippines might be interested in
which outside groups could be financially assisting the insurgency.  The analyst will form
a set of hypotheses and then seek information that might confirm these.  For example, the
analyst might first ask whether the group’s motivations are primarily religious, political
or economic.  If evidence shows the group to be primarily Moslem, the analyst would
look for evidence of support by Saudi Arabia or Iran, whereas if the group seems to be
primarily Maoist, Saudi Arabia and Iran would not be likely sources of support and
different evidence would be sought.  In backward chaining, reasoning is hypothesis-
driven rather than data-driven.

Despite the popularity of backward chaining in the AI literature, most foreign
policy simulations are forward chaining; Katzenstein (1989,1992) and Mills (1990) are
exceptions.  Most foreign policy models are attempting to simulate the policy processes
that tend to be input driven.  These models are also predictive (or post-predictive) rather
than diagnostic.  A model designed to advise policy rather than simulate it would
presumably make more use of backwards chaining to support or refute hypotheses, and
Mills (1990) provides such a model in a simple form.

Categories of Rule-Based Models
Rule-based models tend to be complex, idiosyncratic and difficult to summarize

because any given model is likely to embody a number of different mechanisms.
Nonetheless, it is possible to classify the existing models into three broad categories
based on their structure and objectives.  This section will provide a brief description  of
each of those categories along with a few examples.  My comments on the individual
models highlight only a few of their most salient features; the reader is urged to consult
the original articles for greater detail.4

Classification Models
The simplest form of rule-based model is the classification tree.  Each of the nodes

of the tree contains a question, and the branches of the tree correspond to answers to
those questions.  Classification trees are familiar as a means of everyday knowledge
representation.  Field guides for birds, wildflowers, mushrooms and other natural objects
allow one to “key out” an identification through specific questions.  For example, to
identify a dandelion, a typical field guide would go through a series of questions such as:

                                                  

4 I've differentiated these categories according to the process being modeled; interestingly, one gets a
similar breakdown based on the formal algorithmic structure: classification models use trees; event-driven
models use production rules; and the multiple-agent models use frames and other complex knowledge
representation structures.
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Color: yellow
Blooms in: spring, summer

Flower type: compound
Leaf shape: [series of shapes]
etc.

Eventually one reaches a point where the identification is reduced to a small set of
candidate species and the final classification can be done by comparing the actual plant to
a small number of pictures.  This is a forward chaining process.

A good key starts with the most obvious information—that with the least
acquisition cost—and then proceeds to the more detailed information that provides the
most discrimination among the possible cases to be classified.  In its use of information, a
key differs substantially from a biological classification.  For example, a yellow
dandelion has more in common biologically with a white daisy or blue chicory than it
does with a yellow jewelweed.   Nonetheless, because information on “color” is  acquired
at virtually no cost while the biological concept “compound flower” is more difficult to
convey, “color” is the characteristic used first in the key.  The classification key approach
is also commonly used in guides for the diagnosis and repair of cars, computers, children,
household appliances and so forth.

In principle, a tree with N levels of questions and K branches per question can
classify KN categories; e.g. a binary tree (with two branches per question) with ten levels
of questions can classify 210=1024 categories.  While the complete tree involves K(N-1)

questions, only N questions are required to categorize a case, so a tree is computationally
efficient as a means of storing classification information.  Furthermore, such systems
capture some of the characteristics of human problem solving, specifically the application
of idiosyncratic rules and pattern recognition.  Since rules can be stored and accessed
through associative memory, and only the small feature vector needs to be retained in
working memory, this approach is quite compatible with human cognitive constraints.
Rule-based classification substitutes a principle of modal (most common) behavior in
small samples for the statistical principle of average behavior in large samples.  Rule-
based systems effectively partition the universe of cases into very small subsets
determined by the independent variables of the feature vector, and then predict or classify
the dependent variable using the modal value within each of those subsets.

The earliest use of a formal classification tree model in international relations was
the Alker-Christensen-Greenburg model (1972, 1976) of United Nations dispute
resolution.  Some cognitive maps are similar in structure to classification models;
Bonham and Shapiro’s (1976) cognitive map model of a foreign policy analyst’s
recommendations concerning a crisis in Jordan is another early example of such a model.

Figures 4.2 and 4.3 show parts of the classification trees from Alker and
Christensen (1972,214)5 and Kaw (1989,409) respectively.  In each case, a variety of
qualitative characteristics of the situation are used to determine branching behavior
within the tree; the model determines qualitative outcomes.  In both of these models—as
well as the other instances listed in Table 4.1—the structure of the tree was determined

                                                  

5 This classification tree is only one part of the Alker and Christensen effort, which also involves a
numerical simulation and a very innovative system of learning and precedents in addition to the rule-based
component.  This part of the model is due solely to Alker.
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by the researchers through study, intuition and experimentation, though as discussed in
the next chapter, algorithms exists that allow a tree be to developed directly from a set of
data.

Despite their conceptual simplicity, classification models have proven to be able to
successfully model behavior in a variety of domains.  Furthermore, most of these models
are relatively simple: for example Kaw’s model uses 11 rules to predict 403 cases;
Alker’s uses 7 rules to predict the actions and outcomes in 90 types of UN peacekeeping
actions.  While the potential exists for tautological modeling through the excessive use of
rules, this is not the case in the existing models, where the number of cases considered is
typically at least ten times the number of rules used in the classification.

Security Council
Action:Negative referral
Result:Success
General Assembly
Action:Inquiry
Result:no success

Security Council
Action:Negative referral
Result:Success
General Assembly
Action:Negative referral
Result:Success

Security Council
Action:Inquiry
Result:No success
General Assembly
Action:Inquiry
Result:no success

Security Council
Action:none
Result:none
General Assembly
Action:Inquiry
Result:no success

Security Council
Action:High noncoercive 
involvementl
Result:No success
General Assembly
Action:High noncoercive 
involvementl
Result:No success

Security Council
Action:High coercive andf 
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Result:Hostilities stopped
General Assembly
Action:High noncoercive 
involvementl
Result:No success

None

Civil War International

Cold War

Other
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Type of issue? Type of issue?
Cold War

Security Council
Action:none
Result:none
General Assembly
Action:Inquiry
Result:no success
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Some 
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opposed by 
Great Powers
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Great Powers

opposed by 
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Other Other

Source: based on Alker and Christensen 1972:214

Figure 4.2.  Alker Models of UN Peacekeeping Actions
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Figure 4.3.  Kaw Model of Soviet Intervention

Event Driven Models
The second general category of rule-based models focuses on events; these models

tend to use a production system approach and simulate the behavior of a single actor.6
The rules in event-driven models deal with how an actor will respond to various
situations, and typically also include the actor’s own anticipatory model of the actions of
other actors in the system.

The production system approach is based on the cognitive model developed by
Newell and Simon (Newell and Simon 1972; also see Simon 1979, 1982).  Holland et al
succinctly summarize this approach:

[T]reat problem solving as a process of search through a state space.  A problem is
defined by an initial state, one or more goal states to be reached, a set of operators
that can transform one state into another, and constraints that an acceptable
solution must meet.  Problem-solving methods are procedures for selecting an
appropriate sequence of operators that will succeed in transforming the initial state
into a goal state through a series of steps.  Some methods are highly specialized for
solving problems within a particular domain (for example, a procedure for solving
quadratic equations), whereas others are generalists that can be applied across a
board range of problem domains.

A handful of general methods have been described (Newell 1969) which are closely
related to each other.  The most representative general method is “means-ends
analysis”, a procedure consisting of four steps:

1) Compare the current state to the goal state and identify differences.

2) Select an operator relevant to reducing the difference.

                                                  

6 Production system models that deal with multiple actors will be discussed below.
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3) Apply the operator if possible.  If it cannot be applied, establish a subgoal of
transforming the current state into one in which the operator can be applied.
(Means-ends analysis is then invoked recursively to achieve the subgoal).

4) Iterate the procedure until all differences have been eliminated (that is, the goal
state has been reached) or until some failure criterion is exceeded. (Holland et al
1986, 10)

As with the classification trees, this approach is motivated by the human cognitive
constraints of an effectively unlimited memory but a modest capacity for logical
reasoning.  Production system models can be implemented and tested on even small
computers with relative ease, and this approach characterized much of artificial
intelligence research prior to the 1980s.

While few researchers would accept the Newell-Simon approach as a complete
description of human problem solving behavior, it forms a good point of departure.
Carbonell’s (1978)  POLITICS model, which is a very simple ideological simulation, is a
production system model, as were the early foreign policy modeling efforts at Ohio State
(Thorson and Sylvan 1982; Anderson and Thorson 1982).  In the production system
model

The decision module of the simulation maintains a data structure containing the
current description of the environment.… called the ambient information structure
(AIS). … The AIS contains symbols [representing] a description of the current
environment.  Examples of state knowledge elements include: “Significant military
threats exists”, “The US is willing to provide arms”, “Nation X is hostile”… At any
point in time, the AIS contains those state knowledge elements that describe the
env i ronmen t  f rom the  pe r spec t ive  o f  Saud i  Arab i a .

The behavior generating part of the simulation consists of a set of decision rules.
The contents of the AIS determine which rules are to be executed, and, thus, which
behaviors the simulation will exhibit. (Anderson and Thorson,182-183)

When a decision rule is executed, it modifies the AIS, which may then trigger
additional decision rules. Other decision rules periodically run automatically; for example
in the Anderson and Thorson simulation, a module decides on the oil production for
every “month” of the simulation.

In event driven models of foreign policy, rules are organized primarily by the
actions that actors in the system might take or else rules respond to declarative
knowledge dealing with the attributes of other actors (e.g. is it an ally or adversary).  In
addition, each simulation has a variety of “objects” to which the rules may refer.7

                                                  

7 I am standardizing the terminology here, which is anything but standard in the field.  In Thorson and
Sylvan (1982), objects are called "vocabulary" and events are called "semantic kernals"; in Taber (1990)
objects are called "actors" and events "verbs".  This absence of a standard vocabulary stems from the fact
that knowledge representation concepts have yet to jell within their parent discipline of computer science.
As Doyle points out:

Past work [in AI] was often creative but rarely precise, since all that mattered was that the general idea
of the work be suggestive enough to other, usually personally known, researchers so that they could
figure out how to place it within their own favorite vocabulary and methodology. (Doyle 1988,20)
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Various combinations of events and objects, modifying the model environment as a
result, trigger the rules.  Taber summarizes this process

The production rules allow reasoning from an interpreted event (or from a change
in the regional situation that might not be strictly an event) to some policy output
through inference chaining.  These rules take the general form of IF-THEN
statements.  Some take situations as their conditions (IF an important enemy attacks
an important friend…), while others takes goals as their conditions (To oppose the
attacker…).  In addition, some give goals as their consequences (…, THEN oppose
the attacker), while others given executable actions (…, THEN attack the attacker).
Specific executable behaviors are recommended by reasoning through an inference
chain from the input event to the output policy recommendation. (Taber 1990,5)

Table 4.2 provides partial lists of the type of actions considered by Thorson and
Sylvan (1982) and Taber (1990,n.d.) respectively

                                                                                                                                            
In contrast, the behavioralist adoption of statistical techniques and the rational choice adoption of
microeconomic techniques borrowed from mature fields.
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Table 4.2.  Objects and Events from Event-Driven Models

 Objects and Events from Thorson and  Sylvan (1982)
Objects
Actors: US, USSR, CUBA, BERLIN, TURKEY, US-SHIPS, USSR-SHIPS
Type: MISSILES, ARMED-FORCES
Intensity: HIGH, MEDIUM, LOW
Channel: PUBLIC, PRIVATE
Events
Type I: NOACTION, RUNBLOCKADE
Type II: BLOCKADE, INTERCEPT, INVADE, MINE, NUKE, SEIZE,

MILMOVE
Type III: MILBUILD, AIRSTRIKE, ATTACK
Type IV: WARN, OFFER, ACCEPT, NEGOTIATE, CONDEMN

Objects and Events from Taber (n.d.)
Objects
Actors: afghanistan, albania, bangladesh, bhutan, brunie, burma, cambodia, ceylon,

chine, east germany, … , timor, us, ussr, west germany, west irian, west
pakistan [50 actors in total]

Events
Verbs: attacks, physically threatens, verbally threatens, threatens, invades, assaults,

aggresses against,…, extorts value from, economically threatens, accuses of
violating agreement, accuses of breaking truce, …, breaks truce, violates treaty,
violates agreement

[90 verbs in total]
Context Statements: problem is getting worse, problem is getting better, regional

war, regional war involving us, war, war involving us, world opinion is against
us, target is weakening

The event driven approach is attractive for at least three reasons.  First, the
structure of the rules is actually simpler than the trees found in the larger classification
models or the complex knowledge representation structures found in multiple agent
models.  The use of natural language verbs to describe events means that the rules can
oftentimes be derived directly from policy statements made by the decision-makers being
modeled: for example Taber is able to use content analysis to assign confidence factors to
rules comprising the various paradigms in POLI by looking at the number of times a rule
was used by speakers in the Congressional Record.8

Second, the output of an event-driven simulation can be more complex than the
outcome of a classification model or a numerical simulation, and will often correspond
fairly closely to the actual historical record.  In other words, the actions predicted by an
event-driven simulation will look similar to those recorded in a journalistic account,
albeit with a somewhat limited vocabulary.  Numerical simulations, in contrast, usually

                                                  

8 POLI implements three different decision-making paradigms: militant anti-communism, pragmatic anti-
communism and isolationism.
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compress a variety of behaviors into an aggregated score rather than predicting discrete
behaviors.  For example in the Thorson and Sylvan (1982)  model of counterfactual
outcomes in the Cuban Missile Crisis, the policy outcomes involve specific events such
as “Soviets launch a medium intensity airstrike against Turkey”, whereas a numerical
simulation would typically show an increase in a conflict variable consistent with
“medium airstrike” without specifying the target or means of attack.  A number of
models have demonstrated that a relatively small number of rules are sufficient to
produce remarkably complex and realistic behavior.

Finally, both the rules and output of an event driven simulation are easier to
interpret than comparable elements in a numerical simulation.  Some translation is
required to go between natural language and the formal specification, but the formal
language —typically LISP—involves verbs and proper nouns: an airstrike is “airstrike”,
Turkey is “Turkey”.

Multiple Agent
The multiple agent models are the most complex form of rule-based model and, in

contrast to the other two categories, have little in common with each other except for the
use of frame-based specifications.  Many of these models are highly complex and while
they rest on a rule-based structure, their primary focus is on the interactions of the
component parts of the model rather than on the rules per se.  Multiple agent models are
also more likely to try to achieve process validity as well as outcome validity.

The simpler form of a multiple agent model allows two or more event driven
models to interact with each other; Banerjee (1986)9 and Schrodt (1988a) are examples of
this approach.  The behaviors modeled are simplified—in particular the decision rules
and allowable actions are quite limited—but because multiple agents interact, the system
can exhibit a self-contained evolution over time, rather than focusing on a single decision
or crisis.  These models are similar in their objectives—though much simpler in
structure—to numerical global models such GLOBUS but they deal with qualitative
rather than quantitative behavior.

More complex are systems that attempt to model the internal debate within a
bureaucracy.  While the simpler event driven models can generate “debate” through the
application of various production rules or by using backwards chaining, a multiple agent
system explicitly models multiple paths of bureaucratic consideration.10   For example, in
Sylvan, Goel and Chandrasekaran’s (1990, 1991) JESSE model of Japanese energy
security policy—easily the most complex completed multiple agent model in the
published literature—the problem of foreign policy is decomposed into a set of
subproblems, as illustrated in Figure 4.4.  The complexity of the decision-making
environment, in turn, means that the information used by the simulation itself is complex.

                                                  

9 Banerjee develops a model of social structure development rather than foreign policy but its underlying
structure and methodological justification is very similar to the other models discussed here.

10 "Blackboard systems" (see Nii 1989) are another architecture—inspired by bureaucratic problem-
solving—that would seem natural for bureaucratic modeling.  In such systems, a number of semi-
autonomous computational agents work together on a problem, sharing a common memory.
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JESSE is based on Chandrasekaran’s (1986) theory of “generic tasks” and with frames
containing information on various policy options; Table 4.3 gives one of those frames

Japanese
Foreign 
Relations

Japanese
Asian 
Relations

US Support for 
Economic 
Order

Japanese
US Security 
Relations

Foreign 
Markets for 
Exports

International
Economic
Order

Major Problems in 
Japanese Asian Relations

Current Problems in 
Japanese Asian Relations

Major Problems in 
Japanese US Security 
Relations

Current Problems in 
Japanese US Security 
Relations

Source: Sylvan, Goel and Chandraskaran (1990:82)

Figure 4.4.Policy Options in JESSE
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Table 4.3.  Hypothesis Frame from JESSE

Hypothesis: FlowDueToChangeInExportCapability
Superhypothesis: EnergyFlow
SubHypotheses:
MajorChangeInExportCapability
ImmediateChangeInExportCapability
CostDueToChangeInExportCapability
Ask (Yes,No, Unknown):
Q1: Has there been a decline in the enregy production capability of an

energy-exporting country?
Q2: Has there been a decline in the energy transportation capability of

an energy-exporting country?
Rule 1:
If (Q1 = Yes) or (Q2 = Yes), then hypothesis very likely;
otherwise Rule 2
Ask (Yes,No, Unknown):
Q3: Is there likely to be a decline in the energy production capability?
Q4: Is there likely to be a deline in the energy transportation capability?
Rule 2:
If (Q3=Yes) or (Q4=Yes), then hypothes is likely;
If (Q3=Unknown) or (Q4=Unknown), then hypothes is uncertain ;
otherwise hypothesis is unlikely.
Actions: If hypothesis is very likely or likely,
then establish hypothesis;
activate subhypotheses;
else reject hypothesis

Source: Sylvan, Goel and Chandrasekaran (1990,92)

While a complex system such as JESSE could be implemented as a rule-based
system (Sylvan, Goel and Chandrasekaran 1990,104), and the system represents part of
its knowledge as production rules, the system goes far beyond framework.  As those
authors note:

There are several important differences between [JESSE and production systems]:

First, our analysis of Japanese energy-related decision making is at the level of the
generic information processing tasks. … Since the language of production rules is
at a lower level of abstraction, it does not offer any constructs for capturing these
task-level distinctions.

Second, the knowledge in JESSE is organized around concepts that are represented
as frames.  … This leads to a more “molecular” form of knowledge representation
and information processing.  Rule-based systems, in contrast, have a more “atomic”
representation.

Third, the semantics of the concepts is different in the various modules of JESSE:
the concepts are hypotheses in the first and second classification modules, indexical
categories in the third classification module, and plans in the fourth module.
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Fourth, the generic task framework explicitly specifies the abstract control of
processing for each generic task.

Finally, the generic task methodology enable more efficient processing, easier
knowledge acquisition, and more perspicuous explanation of knowledge and
processing.

(Sylvan, Goel and Chandrasekaran 1990,104)

The clear advantage of a system such as JESSE is its internal complexity, which
allows for a far richer set of behaviors than one can generate using a simpler model.  The
obvious disadvantage is the amount of effort involved: the source code for JESSE runs to
some sixty pages, and since this code is written in a specialized high-level language
designed for the implementation of complex expert systems, the equivalent
implementation of the system in LISP or C would be much longer.  The “knowledge
acquisition” phase of the system’s development was also complex and based on
substantial earlier interview work (see Bobrow, Sylvan and Ripley 1986).  Based on the
JESSE experience, the labor required to develop a large multiple agent model is probably
of roughly the same magnitude as that required to develop a large numerical global
model.

Uncertainty in Rule-Based Systems
Most contemporary rule-based systems have some means of representing

uncertainty, but the methods used vary considerably.  For historical reasons, the
development of expert systems proceeded largely uninformed by statistical decision
theory, so the resulting approaches are something of a hodgepodge.  In general, three
methods have been widely employed—traditional Bayesian logic,  Dempster-Shafer
logic, and fuzzy sets—with the last emerging as the clear favorite; Giarrantano and Riley
(1989) provide a good survey of these methods.

For the mathematically trained, the most straightforward approach to representing
and processing uncertainty are the Bayesian methods of formal probability theory: prior
beliefs (e.g. Nation X believes that Y is very likely to attack but Z is not very likely) are
assigned a priori probabilities.  Bayesian analysis is very well developed mathematically,
yet this approach has proven problematic in rule-based systems.  As Rothman notes:

Implementing a Bayesian uncertainty management system is complicated by
problems.  First, [it] requires knowledge of all of the a priori probabilities.  Worse,
these probabilities are often inconsistent when elicited from human experts.
Specifically, the probability of hypothesis H in the absence of any other evidence
E’ should be the prior probability P(H|E’); this is often not the case.  As a result,
updating a node with evidence in support of a hypothesis may actually lower the a
posteriori probability of H. … The complex interactions between the various
probabilities may make modification of the knowledge base unwieldy, since the
sum of the probabilities must remain constant.  Bayesian reasoning assumes that all
possible outcomes are disjoint, an oft-violated assumption.  For example, a person
may suffer from more than one disease or a machine may suffer multiple
component failures. (Rothman 1989,59)
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In general, the sheer complexity of rule-based systems tends to make Bayesian
methods unwieldy, though the method is still appropriate in situations where the input
and output of the system is simple and well defined.

A widely used alternative for dealing with probabilities in a complex domain is
Dempster-Shafer logic (Shafer 1976), a probability management technique.  The
Dempster-Shafer technique maintains many of the concepts and vocabulary of probability
theory but relaxes the axiom

Prob(X) + Prob(not X) = 1

and separates the issues of the “belief” that a proposition is true from the
“plausibility” that it is true based on a specific line of evidence.  Because the Dempster-
Shafer method was design from the outset to allow uncertainties to be updated without
generating logical inconsistencies, it is easier to manage in large systems than Bayesian
logic.

By the early 1990s, the most common system of uncertainty management in use in
expert systems was fuzzy logic, a concept originally introduced by Zadeh (1965; Zadeh et
al 1975).  This idea has already been applied in a number of formal models of
international behavior (see for example Cioffi-Revilla 1981, Sanjian 1988a, 1988b) and is
now widely used in expert systems (see Negotia 1984, Zimmerman 1991, Kandel 1992,
Yager and Zadeh 1992)11.  The basic idea behind fuzzy logic is the ability to assign a
“partial truth” value to an assertion.  Taber’s POLI model uses fuzzy logic:

Reasoning in POLI is fuzzy.   The conditions in a production rule, and the rule
itself, carry partial truth value.  In Boolean logic, of course, such conditions must
be either true or false, leaving no room for degrees of truth, which would be a
serious inflexibility in a belief system such as POLI.  Decision makers clearly have
uncertain beliefs and use verb hedges to qualify their beliefs; a reasonable model of
this  process should al low reasoning from part ial  t ruth.

Consider the rule “IF a person is tall THEN that person is fat” with a CF
(certainty factor) of .3.  This rule means that the expert system has a .3 confidence
in the conclusion “that person is fat” when it is certainly true “that person is tall”.
When the system receives information that “Harold is tall” with CF=0.9, we can
infer the information that “Harold is fat” with a calculable degree of belief.
Through an application of the compositional rule of inference we compare the CF
of the new information (0.9) with the CF of the known relationship (0.3), taking the
smaller. (Taber 1990,5)

Note that while the certainty factors in fuzzy logic are stated as probabilities, the
rules of inference are quite different from probability theory.

While the concept of fuzzy logic was initially somewhat controversial, it seems to
be winning in both the intellectual and commercial marketplace.  This is probably due to
several factors.  First, fuzzy logic is a complete logical system that turns out,

                                                  

11 If Japan is a leading indicator, this term, like "zero-sum", may be on its way to entering the popular
vocabulary: In the summer of 1991, "fuzzy logic" was being used as a selling point on consumer products
such as video cameras, washing machines and automatic rice cookers in the Akihabara electronics district
in Tokyo.
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mathematically, to encompass both Aristotelian and Boolean logic as special cases, rather
than being ad hoc and designed solely for expert systems.  Second, the method is quite
straightforward to implement computationally.  Third, the uncertainty statements used by
fuzzy logic correspond more closely to the use of uncertainty in human reasoning than do
many alternatives, and translation between human uncertainty judgments and fuzzy
statements is straightforward.  Fourth, and not least significant, systems built using fuzzy
logic produce desired behavior—they work—and do not become bogged down as the
system becomes more complex.  Unless some superior system comes along, fuzzy logic
systems, or variations based on similar principles, will probably become the most
common means of handling uncertainty in rule-based systems.

Outcome and Process Validity in Rule-Based Systems
The information and processes used in rule-based models are much closer to the

written record of foreign policy decision-making than the processes found in a regression
equation, numerical simulation or even most rational choice models.  Computational
models require fewer “as if”s, and as a consequence, a number of researchers have
suggested that process validity should be a major concern (e.g. Mefford 1991).  More
generally, the complexity of the information processing in a computational model allows
for meaningful comparisons with the internal dynamics of an organization, whereas most
statistical and rational choice models fall back on unitary actor assumptions.  The rules
invoked by the model often have much the same form and vocabulary as those found in
the discourse of policy debate, and in some models they have been derived directly from
records of that debate (e.g. Taber 1992).  Similarly, the ability of an rule-based model to
work through chains of inference of considerable complexity and to consider multiple
lines of inference has much in common with observed policy processes.  Rule-based
systems provide a sophisticated form of rationality and are a useful illustration of the fact
that a rational model does not have to be an expected utility model.

In some respects, little distinction needs to be made between process validity and
outcome validity: process validity is simply outcome validity in the component parts of
the model.  Any foreign policy decision has multiple layers—levels of analysis as it
were—and consequently can be decomposed into subprocesses involving ever-smaller
decision-making units.  For example, the process of setting the U.S. defense budget can
be decomposed into the various stages of budget requests and revisions, and each of those
components can be modeled separately, an approach used in Majeski (1989).  Similarly,
the pattern of information flow within an organization could be modeled and, with a
suitable metric, compared to the information flow found in a set of memoranda.

Rule-based models that have been explicitly tested do fairly well in terms of
outcome validity; Table 4.4 presents some of these results.
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Table 4.4.  Outcome Validity in Rule-based Models

Model Behavior Predicted N Accuracy

Tanaka 1984 Chinese verbal behavior in crises 1949-1978 383 82%
Chinese physical involvement  60%

Hudson 1991 Foreign policy behavior in CREON 6605
Affect 49%
Commitment 24%
Instrument 62%
Recipient 63%

Kaw 1989 Soviet military intervention  1950-1987  403 88%
Majeski 1989* US defense budgeting 1954-1979 26

Armed services proposal 65%
Presidential proposal 54%
Congressional appropriation 61%

Taber 1990 US policy in Asia  1949-1960 161 86%

* Unlike the event-oriented models, the Majeski model predicts specific budget levels; the “accuracy” figures
reported here are the ratio of the mean absolute deviation of the rule-based model to the mean absolute deviation of a
linear model, i.e. the rule-based model generates roughly half the error of the linear model on Presidential budgeting,
and if the model were perfect, the “accuracy” figure would be 0.

The record on process validity, in contrast, is more mixed.12   For example, in
discussing their assessment of the JESSE model, Sylvan, Goel and Chandrasekaran
observe

Our results [comparing JESSE to two actual energy crises] show that the
performance of JESSE is reasonable.  By this we mean that the outcomes of JESSE
are generally in line with what actually transpired.  Nothing resembling
“contradictory” circumstances took place. … We have demonstrated the system to
a few domain experts. … Their judgment so far has been that the energy policy
decision-making process followed by JESSE is plausible.…We have not chosen to
undertake any quantitative statistical tests. (Sylvan, Goel and Chandrasekaran
1991,97)

Along a similar vein, Job and Johnson note that in examining

UNCLESAM’s capacity to replicate the four major escalatory sequences of U.S.
action during 1959-1965, we find that UNCLSESAM performed quite
“satisfactorily”.  Thus for the crises of 1961 and of 1965, and in the two other
situations involving U.S. uses of force, UNCLESAM accurately reproduced a
record that mirrored U.S. actions in these circumstances (Job and Johnson
1991,238)

                                                  

12Job and Johnson cite Mallery (1988) to justify not using formal tests; Sylvan, Goel and Chandrasekaran
cite Alker's (1975) discussion of computational hermeneutics.
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While process validity is an attractive objective, it presents a number of difficulties,
and some situations the pursuit of process validity to the detriment of outcome validity
may be an instance of the best being the enemy of the good.  The problems facing the
quest for process validity include the following:

First, reality is a low probability event.  The likelihood of correctly duplicating the
idiosyncrasies of an individual foreign policy decision, particularly one involving small
group decision-making, is exceedingly low.  A regularized decision process such as credit
approval is quite different than crisis decision-making, where even outcome validity
presents a challenge.  A foreign policy model of a regularized  procedure—for example
visa approval by the US embassy in Brunei—could probably be achieved, but such
processes provide only limited theoretical insights.As noted in Chapter 2, extensive
research indicates that human probabilistic reasoning differs significantly, and quite
idiosyncratically, from any formal system yet devised for handling uncertainty.  The
various forms of probabilistic reasoning incorporated into rule-based models only
approximate, rather than duplicate, human reasoning in comparable situations.  Those
approximations are clearly sufficient to produce accurate outcomes but it seems unlikely
that they will duplicate process, particularly in situations characterized by a great deal of
missing and noisy information.

Second, the sheer complexity of any bureaucratic decision that has not been
deliberately and rigorously regularized poses another challenge to process validity.  The
types of decisions commonly studied in rule-based models—major power decision-
making in a regional or topical domain—probably involves hundreds of individuals
working with thousands of discrete items of information and communicating with tens of
thousands of internal memoranda over the course of several months.  Despite all of this
flurry of activity, the end result may be relatively simple—so outcome validity can be
assessed—but the process itself is not simple.  At the present levels of resource
investment in political science modeling, it seems unlikely that we will have either the
information, time or labor required to duplicate systems at this level of complexity.

Finally, it is not clear that a record even exists to test a model for process validity.
Former Johnson aide Dean Rusk comments

… the written record reflects only a portion of the thoughts in the minds of those
who are making decisions and of the content of discussions among themselves
which do not appear in the written record.  Any foreign policy question of any
significance has within it dozens upon dozens of secondary and tertiary questions
and the minds of policy officers run through a very extensive checklist of such
elements — regardless of what the written record shows. (quoted in Neustadt and
May 1986,xvi)

This observation cuts two ways.  First, if a model correctly mimics the written
record of a decision , this means only that the model reflects accurately how those in
authority wanted the decision-making process to appear.  The recorded decision-making,
almost always written with the benefit of hindsight, is likely to appear more logical,
ordered and devoid of dead ends than the actual process, and such a simplified process
will be easier to model than the actual decision-making.  Alternatively, if the model does
not reflect the written record, it might still, in fact, be reflecting the actual process, but
there is no way of knowing this.



114 Patterns, Rules and Learning

When a complete record has been preserved, the discourse we observe within an
organization is the result of the interaction between the limited bandwidth in the
organization and the very broad bandwidth at the subcognitive level in individuals.  We
observe only the transmission of pattern information in political discourse—not the entire
knowledge base—and the paper trail of debates, meetings, position papers and
memoranda is highly idiosyncratic because of the desire for efficient communication, the
joint effects of shared tacit information and the various possible states of the system.  It
only partially describes how a decision was made because the subcognitive political
reasoning in an individual is never expressed in language.

Communication using natural language is serial, relatively slow, and often
inefficient, and therefore it will be used as little as possible.  An individual skilled in
persuasion will attempt to transmit only that information which maximizes the likelihood
of activating patterns leading to a desired set of actions by the recipient.  This means
making efficient use of shared knowledge.

Consider the cases of intervention in Laos in the early 1960s and the re-flagging of
Kuwaiti tankers in 1987, the cases studied by Majeski and Sylvan, and Boynton (n.d.).  A
military briefing on the Loatian situation would not start with the information “The
Communists are our enemies” or “A victory for Communism would be bad for the United
States”.  While logically necessary for an argument, this information is already shared by
the relevant decision-makers and is therefore never mentioned.  In the decision to re-flag
Kuwaiti tankers, in contrast, the security of Kuwaiti shipping had not previously been a
major United States foreign policy objective and therefore it had to be made explicit.

The pattern being matched is the same in both cases: the difference is whether that
information is tacit (shared) or explicit.  The full pattern would look something like

General pattern                                                Laos                Kuwaiti tankers

X threatens the US tacit explicit

US military force would reduce this threat explicit tacit

We don’t want escalation tacit tacit

There is little risk of escalation explicit explicit

While the general pattern is roughly the same in both cases, the arguments present
in the discourse are quite different because of the differences in tacit information.

This situation can be generalized further: if we use the schematic representation of
any pattern as a binary vector and assume for the moment that each feature has only two
states, then discourse takes place on the exclusive-or (XOR) of the two vectors:

Desired vector 1 1 1 0 0 0 1 0 0 0 0 0 1 1
XOR

Tacit vector 1 1 0 1 1 1 1 0 0 1 1 0 0 1

Discourse vector 0 0 1 1 1 1 0 0 0 1 1 0 1 0

Skillful rhetoric involves the activation of a series of associated patterns to
reinforce the validity of the main message.  This leads to considerable redundancy in the
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message from a strictly logical standpoint, but that addition information serves a clear
cognitive purpose.

Consider the problem of establishing the first pattern component above, “X
threatens the US”.  In the case of Laos in 1960, the substitution rule “X = Communists”
establishes this immediately.  In the case of the Persian Gulf, this first point is
decomposed into a series of subpatterns that must be satisfied.  In the Kuwaiti tanker
case, the subpatterns went something like

Iran is an enemy of the US

Kuwait is a weak country compared to Iran

Kuwait is seeking aid to protect its oil tankers from Iran

The Soviet Union is offering aid

The Soviets will gain influence with Kuwait if the USSR aids Kuwait

The Soviet Union is an enemy of the US

Kuwait is an ally of Saudi Arabia

Saudi Arabia is an important ally of the US

Saudi Arabia is an enemy of Iran

The US will gain influence with Saudi Arabia if the US aids Kuwait

I have deliberately not presented a deductive argument here .  Aspects of these
patterns are redundant and there are multiple paths that could trigger the subpattern as
being equivalent to a “threat”.  In fact, even the Reagan administration itself was never
completely clear as to whether re-flagging was designed to improve US relations with the
Gulf States, stop the Soviets or give the United States a chance to get back at Iran.  These
potential logical contradictions actually become one focus of the discourse: Boynton
observed that Senator Nancy Kassebaum would query the administration, “The Soviet
Union is an ally of Iraq, correct? … And Kuwait is also an ally of Iraq”.  In this
exchange, Kassebaum is trying to invalidate the pattern being constructed by the
administration and replace it with the new pattern, “Kuwait is already an ally of the
Soviet Union” (ergo: they are the Soviet’s problem, not our problem).

The extent to which information is explicit rather than tacit is an aspect of culture.
While North Americans and northern European tend to rely on explicit communications,
many cultures rely on what Hall (1976) calls “high context” communication:

A high context communication is one in which most of the information is already
in the person, while very little is in the coded, explicit, transmitted part of the
message.  A low context communication is just the opposite; i.e. the mass of the
information is vested in the explicit code.

Japanese, Arab and Mediterranean people who have extensive information
networks … are high context.  As a result, for most normal transactions in daily life
they do not require, nor do they expect, much in-depth background information.
[They] keep themselves informed about everything having to do with the people
who are important in their lives.  Low-context people include the Americans and
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the Germans, Swiss, Scandinavians, and other northern Europeans. (Hall and Hall
1987, 8)

The cultural norms of organizations likewise differ considerably.  Northern
European and most North American bureaucracies compartmentalize information, a sort
of an information Fordism.  This deals with the communications bandwidth constraint by
reducing the information flow to a minimum and formalizing as much decision-making
as possible into simple rules.   Compartmentalization places few demands on individuals,
who as a consequence can be easily trained and replaced.  The drawback to the approach
is that it is not very adaptive and it is brittle with respect to organizational behavior.

Hall’s high context cultures provide an alternative to this approach by placing a
great emphasis on socialization and shared values, as well as sharing information very
widely.  Japanese management is known for this style, though some US companies such
as Xerox, Procter and Gamble, and Walmart also use it.13  A high context management
system extracts a very high upfront cost in terms of socialization but the high level of
shared knowledge reduces the stress on the communications bandwidth.  This results in
an organization that can quickly transmit new information and therefore adapt to a
changing environment, but which is brittle with respect to individuals because it takes a
long time to socialize a new member.

As a consequence of these characteristics of organizational decision-making, the
extent to which the written records of an organization reflect its actual decision-making
will vary widely.  The record is likely to be most complete when a low context
organization confronts a novel situation: in that instance, almost all of the information
will be explicit.  It will be least complete when a high context organization deals with a
routine situation: in that instance most of the problem-solving will be done using shared
information and the written record will probably be both incomplete and very
idiosyncratic.

One should not, however, despair if rule-based models “only” have outcome
validity in some circumstances.  The expert systems literature provides a useful
illustration of this the contrast between human intelligence and machine intelligence with
respect to outcome and process validity.

                                                  

13 Military organizations are an amalgam of the two styles.  The stereotype of military information
processing is that it is highly rule-oriented and low context.  In some aspects military decision-making this
is true, for at least two reasons.  First, military basic training is designed to replace rational, serial
processing with rapid, pattern-based reactions.  This reduces reaction time, which in combat can mean the
difference between life and death.  In addition, combat losses can create a high turnover, and individuals
need to be able to take over a job at a moments notice without having to learn to any details of the unit they
will manage.  These pressures for the rule-based, low context environment that is advantageous on the
battlefield can lead to ludicrous results in peacetime, as with the late 19th century infatuation with
Napoleonic drill in the age of the machine gun, or the 20th century rules on weapons acquisition.

At the same time, however, the social isolation of the military provides the basis for a high context culture
within the officer corps; this has been further reinforced since the mid-19th century by an extensive system
of military education.  Ironically, this high context military culture often conflicts with the low context
civilian bureaucratic infrastructure supporting it; the civilians insisting on "following the rules" while the
military want to simply "get the job done", where "the job" is implicitly understood.



Rule-based Models 117

Based on about fifteen years of experience, it appears that expert systems can
match or exceed human performance in two general areas: classification problems (e.g.
diagnosis of disease, repair and configuration of equipment) and the information
processing of large bureaucracies (e.g. insurance underwriting or credit approval).14

Computers clearly do not solve classification problems in a human fashion.  When a rule-
based classification system is developed, its logical simplicity is usually of considerable
(and sometimes demoralizing) surprise to the human experts who worked in the domain.
The human expert solves classification problems using associative recall over a large,
unsystematic but representative set of examples; the machine uses the logical processing
of a relatively small number of rules.  These machine intelligence systems duplicate the
performance of the human expert without duplicating the process.

Expert systems that replace bureaucratic functions such as credit approval, in
contrast, probably exhibit a great deal of process validity.  A bureaucracy has a relatively
low amount of associative memory due to high turnover, the expense of training, and
physical information files that are generally accessed linearly rather than associatively.
As The Economist notes

the range of expertise that can be captured by an expert system is limited to simple,
self-contained jobs which require no commonsense reasoning.  But in part because
the trend in management over the past century has been to break jobs into small,
and supposedly more manageable, pieces, there turn out to be many things that
expert systems can do without stretching (Economist 1992,12)

Low context bureaucratic decision-making reduces human information processing
to the level of a machine and because of this artificially imposed procedural regularity,
the process by which the expert system reasons is not dramatically different than that
used by the individuals in the bureaucracy it replaced.

Learning in Rule-Based Models
While the information contained in most rule-based models of foreign policy is

fixed, some of these systems exhibit simple learning.  The numerical model in Alker and
Christensen (1972) embodies some fairly sophisticated learning concepts based primarily
in the psychological literature of the 1960s.  Tanaka’s CHINA_WATCHER (1984),
which is conceptually based on Alker’s earlier work on precedent, has the most explicit
learning component of any of the models discussed in this chapter, continually assessing
whether other nations in the system are friendly or unfriendly.  In the PWORLD
simulation (Schrodt 1988a), also based on the Alker work, simulated states copy from the
successful strategies of other states in the system, though their repertoire of behaviors is
very limited.  EVIN (Taber and Rona 1995), an extension of the POLI model, will
interpret new political information in light of the information it already knows.

A model relying solely on the precedent-based learning of behavior would require a
large amount of background history.  For example, if a system simulating the Cuban
Missile Crisis was to “learn” the dangers of missile attacks and naval blockades before
                                                  

14 Computerized systems are also increasingly used in situations where statistical regularities can be
exploited; often these are hybrids of rule-based systems and classical statistical techniques such as
regression and discriminant analysis.
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deciding on the appropriate policy response, it would need information going back to at
least Korea and World War II, if not John Paul Jones.  As discussed in Chapter 7, data
sets providing information on precedents in the domain of militarized disputes are
available (e.g. CASCON and SHERFACS), but to date no rule-based model has
incorporated these.

Problem solving by the use of successful precedents is similar to the tactic of
“chunking” that is central to the SOAR paradigm of Laird, Rosenbloom and Newell
(1986; also see Waldrop 1988a, 1988b).  Chunking is a generalization of the earlier
Newell and Simon observation that, through experience, humans become more adept at
solving problems because they remember the appropriate rules for solving a problem and
re-apply those automatically, rather than working deductively through each discrete step
of the problem.15   While this concept is very basic, it can dramatically increase the
problem-solving efficiency of expert systems: Waldrop (1988a) cites an example where
chunking reduced the number of steps required to solve a problem from 1731 to 7.
Organizational standard operating procedures are one form of chunked rules; JESSE
explicitly employs “stored plans” in its knowledge base, though in the program’s current
implementation these are set a priori rather than learned

Machine learning could potentially provide a means around the knowledge
acquisition problem in rule-based models.  Model specification is very labor intensive,
which limits the complexity of the model.  More subtly, models based solely on human
perceptions of the problem-solving process are likely to involve a great deal of wasted
effort: Most research in machine learning has shown that human experts rely on great
deal of redundant information because multiple chains of reasoning provide a check
against missing or erroneous data.  Because machines have a far greater capacity to cope
with individual items of information, but are very weak in their associative abilities, the
means by which they compensate for noise are logically quite different from the methods
used by humans.

A system with natural language abilities might also be able to derive some rules
from the communications within the bureaucracy itself, a process similar to that involved
with the human coding of cognitive maps.  In democratic systems, foreign policy
decisions are usually explained and justified, often in great detail; sources such as the
Congressional Record are now available in machine-readable form, and it is relatively
straightforward to search a text for statements embodying the declarative or procedural
knowledge required by a rule-based model.  Explanations in the public record are rarely
wholly truthful—for example few analysts believed George Bush’s assertion that the US
response to Iraq’s invasion of Kuwait had nothing to do with the control of oil, and even
fewer believed it after Bush’s failure to respond to Serbia’s attack on Croatia and Bosnia
a year later—but rarely are the statements wholly fallacious, and in any case expert
systems are excellent at detecting logical inconsistencies.  As noted above, it is unlikely
that one could ascertain the rules of an organization solely from documents but machine-
assisted knowledge acquisition from documentary sources might enable the efficient
                                                  

15 For example, in the days before Velcro™, when a child was first learning to tie his or her shoes, the
process was exceedingly slow and awkward.  With practice, however, it became completely automatic and
could be done without conscious thought.  The process remained complex, but its solution had been
chunked into the single operation "Tie your shoes" rather than the series of operations "First put one string
around the others, then make a bow…".
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development of models that are more complex, more logically efficient and somewhat
more objective than models developed solely through human coding.

Conclusion
Bureaucracies, by definition, are rule-following social organizations, and to the

extent that a bureaucracy actually follows a set of known implicit and explicit rules, a
computational model based on those rules will have a great deal of validity.  Rule based
systems provide a much richer modeling environment than rational models, which are
typically limited to a very small number of options and formal probabilistic reasoning, or
numerical models, which are very awkward when dealing with qualitative behavior.

At the present time, the major problem inhibiting the development of additional
rule-based models is the sheer complexity of the task; this is particularly true of the
multiple-agent models.  An alternative research strategy might be to work on models in
more regularized and clearly defined domains, rather than focusing on difficult domains
such as militarized disputes; such models would at least provide information on what
“normal” foreign policy behavior looks like, and the crisis behavior could be compared
against this.  Rule-based systems are likely to be most successful in highly regularized
and repetitive decisions, though the high level of outcome validity shown in existing
models of crisis decision-making may indicate that even crisis behavior is more regular
than one would intuitively expect.

It may also be possible to do more than we expect using simple models: there is
nothing inherently inferior about a rule-based model involving tens or hundreds of rules
compared to a model containing thousands of rules, provided the simple model mirrors
behavior.  Because of the rule-based nature of bureaucratic behavior, even the simple
model is likely to provide far greater detail and predictive accuracy than a regression or
game theoretic model, because the knowledge structures and information processing of a
rule-based model are far more congruent with bureaucratic processing.





Chapter 5
Machine Learning

Imagine that we are living on an intricately patterned carpet.  It may or may not
extend to infinity in all directions.  Some parts of the pattern appear to be random;
other parts are rigidly geometrical.  A portion of the carpet may seem totally
irregular, but when the same portion is viewed in a larger context, it becomes part
of a subtle symmetry.

The task of describing the pattern is made difficult by the fact that the carpet is
protected by a thick plastic sheet with a translucence that varies from place to
place.  In certain places we can see through the sheet and perceive the pattern; in
others the sheet is opaque.  Light passing through the sheet is often refracted in
bizarre ways, so that as more of the sheet is removed the pattern is radically
transformed.  No one knows how thick the plastic sheet is.  At no place has anyone
scraped deep enough to reach the carpet’s surface, if there is one

Martin Gardner

In the rule-based systems discussed in Chapter 4, and in most of the early expert
systems work in AI, the information required to model a process was obtained “by hand”.
A programmer or “knowledge engineer” first designed a general system appropriate to a
particular domain (e.g. medical diagnosis or credit approval), and then worked with
domain experts such as doctors or bank officers to determine the rules and other
information required.  This approach to knowledge acquisition produced functioning
systems—no small feat in an era when the abilities of computers to perform at human
expert levels was very much in doubt—and had face validity since the program’s
knowledge was based on a trusted human expert.1

As expert systems proliferated, however, it became apparent relying on human
expertise had several disadvantages.  It was expensive: Extracting information from
(well-paid) experts was often time consuming and knowledge engineers (also well paid)
were in short supply.  In addition, experts were often unable to unambiguously articulate
problem-solving rules appropriate for machine implementation because the experts relied
on their subcognitive and associative pattern recognition rather than using deductive logic
and probability theory.  Finally, even a successful system contained only the knowledge
of experts who contributed to it, which precluded the possibility of developing systems
that performed better than the experts.  These obstacles became known as the “knowledge
acquisition bottleneck” and were particularly acute in complex domains where case
descriptions involved hundreds or thousands of features.

The problems with the knowledge engineering approach revived interest in
machine learning methods, which had been developing in parallel with expert systems

                                                  

1 This is sometimes called the "<Name>-in-a-box" approach: Charlene is extremely good at evaluating
mortgage applications, but Charlene is about to retire.  So bring in the knowledge engineer and capture
Charlene's expertise in a computer program—which conveniently will not require cost-of-living increases,
a corner office or vacation leave—and create "Charlene-in-a-box".
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throughout the 1960s and 1970s.2  Machine learning requires the a priori specification of
a knowledge representation system and the identification of the variables required to
solve the problem, but the program itself figures out how to use the information by
learning from examples.  The program is given a large set of cases whose solution is
known—for example medical case histories containing information on both the patient’s
symptoms and the diagnosis of their disease, or credit applications with information on
whether the loan was repaid.  From these “training cases” the program induces a method
of solving the general problem; that solution is then validated on additional cases.

While all rule-based systems are based on elaborations of if...then logic, the
knowledge representation structures and inference techniques used by various machine-
learning systems differ dramatically.  This chapter will consider four of the most common
methods: two of these use structures somewhat like rules (ID3 and genetic algorithms);
the remaining two involve arithmetic calculations.  The class of objects that an algorithm
can discriminate is dependent on the examples on which it has been trained, the
consistency of the features that account for discrimination in the training and testing
cases, and on the ability of the knowledge structure to capture the type of discrimination
that is empirically present.  For example, if the classes are actually determined by a
multivariate linear model, a machine learning algorithm seeking logical rules to describe
them will have a difficult time discriminating between then; the converse is also true.

The distinction between machine learning methods and conventional inferential
statistical techniques can also be quite vague: for example the texts of Weiss and
Kulikowski (1990) and Schalkoff (1992) cover both statistical and machine learning
approaches to classification problems.3  In a sense, parametric statistics such as
regression are a simple form of machine learning.  In a regression equation the
“knowledge structure” is the linear equation and its coefficients; the least-squares
algorithm “learns” the values of the regression coefficients from the values of the
dependent and independent variables in a set of cases.  The knowledge structures used in
machine learning are usually much more complicated than those used in statistics, and
machine learning is not based on probability theory.

The choice of the cases used to train the system is critical.  Training cases must be
representative and must include both examples and counter-examples.  Most machine-
learning systems trained on a set of cases consisting solely of black crows would not
conclude that “All crows are black” but instead that “All objects are black” or “All
objects are crows”.  To impart the  knowledge that all crows are black, some chickens are

                                                  

2 See for example Forsyth and Rada (1986) and Michalski, Carbonell and Mitchell (1983).  For the
purposes of this discussion, I'm using the term "expert system" to refer to any system where the knowledge
is provided by a human rather than induced by the machine; this is a more general use of the term than is
normally found in the literature.

The shift from knowledge engineering to machine learning was dramatically reflected in the AI sections in
bookstores.  When I taught an AI workshop at the ICPSR in 1987, roughly half of the AI books at Border's
Books in Ann Arbor dealt with expert systems (the remainder were mostly introductions to AI and LISP-
oriented works); by 1994 half of Border's much-diminished AI section was devoted to machine learning,
mostly neural networks.

3 Systems used in applied settings also combine different machine-learning methods: Byte (July 1993, 107-
115) discussed several of these.
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black and some chickens are white, the training cases must include black crows, black
chickens and white chickens.

Machine learning systems are not purely inductive: human expertise is required to
define the problem, identify the appropriate features, and develop a representative set of
training and validation cases.  Judicious human intervention can also be used to fine-tune
an otherwise awkward knowledge structure generated by a machine.

However, once an appropriate set of variables has been identified, machines are
often superior to human experts in generating systems that completely describe the
regularities in the set of training cases.  Human experts tend to forget about small
exceptional subsets in the domain until reminded of them by failures in the validation set;
consequently the development of the system is iterative and slow.  Due to the differences
in human and machine memory, machine-learning systems usually make more efficient
use of the information available in the data .  Because human associative perception has a
high internal bandwidth—we can deal with a very large number features in a case so long
as we are only doing pattern recognition—there is little cost to considering redundant
information, and redundant features may in fact be useful when compensating for noise.
With a computer, in contrast, adding features increases the processing required, and
because the machine has no intrinsic error-correction methods4, there is no advantage to
retaining redundant information.  As a consequence the classification systems produced
by machine learning systems often require fewer variables to achieve a given level of
accuracy than a human expert would use.

Finally, machine learning does not require a human expert to “think like a
machine”, artificially translating his or her expertise into a novel form such as rules.  In
addition, the knowledge structures of the machine are not restricted to a level of
complexity that humans can logically cope with.  For example, in Chapter 6, I discuss a
sequence comparison technique whose knowledge structure is a matrix containing about
30,000 cells.  The values in a structure of this size are far too numerous for a human to
deal with consciously—even though the matrix is simpler than the structures used
subcognitively by the brain—but the machine can determine those values using a set of
examples.

This chapter covers four machine learning methods that have been widely used in
machine learning: ID3, genetic algorithms, neural networks and nearest neighbor
(clustering) methods.  Each method is illustrated with an international relations
application; the neural network and ID3 methods are compared with each other and with
some statistical techniques.  While much of the chapter involves the technical discussion
of the algorithms and their properties, I also make a number of general observations
about parallels between aspects of machine learning, organizational learning, and
knowledge structures that might be relevant to the development of foreign policy.

Each of these techniques was implemented in Pascal on a personal computer.
Contemporary machines are at least an order of magnitude faster than those I was
working with, and it would now be possible to use these methods on problems of
considerably greater complexity than those demonstrated here.  Commercial software is
available implementing each of the methods, but the core algorithms for ID3, genetic

                                                  

4Neural networks do this as part of their classification process but not in their inputs.
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algorithms and neural networks are quite simple—a couple hundred lines of Pascal or
C—so writing custom programs is not overly challenging.

ID35

As discussed in Chapter 4, most rule-based systems encountered in international
relations use forward-chaining if...then rules.  To date, almost all of these rules have been
coded by hand, but such systems are actually very straightforward to construct by
machine.  This section discusses a bootstrapped version of the most common inductive
learning algorithm, ID3, which is used in most commercially-available inductive expert
systems.6  ID3 is a very robust technique—in a sense it is the linear regression of
machine learning—and it is often used as the basis of more elaborate methods.7

 The core of the ID3 algorithm is the tree-building CLS (“Concept Learning
System”) technique developed by Hunt (Hunt, Marin and Stone 1966).  Hunt’s CLS
created a classification tree by successively determining which variable out of a given set
should be used to make the next node of the tree.  Quinlan (1979, 1983) made a key
modification to CLS by employing the information-theoretic concept of entropy to
determine the choice of variable; his overall system was called ID3.  Quinlan was
working on the problem of chess endgames and the full ID3 algorithm involved a scheme
for iteratively generating rule sets out of very large sets of data by looking at subsets of
data and then determining exceptions in the full set (see Cohen and Feigenbaum
1982,406).  In most contemporary applications, the number of cases is sufficiently small
that the entropy-based CLS is computationally efficient, so only the CLS part of the
algorithm is used.  ID3 can be modified to work with interval data but the method used
here assumes the data are nominal.8

The basic mechanism of ID3 is simple.  The data are a set of cases, each containing
a number of nominal features and a single nominal dependent variable to be predicted.
ID3 starts building the classification tree by choosing the independent variable that
minimizes the total entropy of the dependent variable after the cases have been split on
that variable.  Entropy is defined using the standard information theory definition (Pierce
1980)

H = ∑
i

 pi log2(pi) 

where pi is the proportion of dependent variable values in category i.

                                                  

5 Parts of this section appeared earlier in Schrodt (1991c).

6 Thompson and Thompson (1986) provide a very readable description of the basic ID3 technique; Garson
(1987) describes ID3 in the context of a political science modeling problem.

7 See for example the I2D method developed by Unseld and Mallery and applied to the analysis of the
SHERFACS data set (Unseld and Mallery 1993; Mallery and Sherman 1993).

8 According to Garson (1991,402), "For interval data, the ID3 method treats the mean of each pair of
adjacent ordered values as a potential threshold (cutting point), then uses [ID3] to select the threshold point
expected to contribute the most information on the dependent variable."
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ID3 successively partitions the data set based on the values of features in the set of
cases.  For any subset of the data C, the entropy given a specific value of a dependent
variable aj is computed as

H(C|aj) = -∑
i

 p(ci|aj) log2 (p(ci|aj)) 

where

p(ci|aj) = proportion of the cases in the subset C where the dependent variable

has the value i and the feature A has the value aj

The total entropy of the subsets generated by a feature A is the sum of the entropies
of each category of that feature times their probabilities:

H(C|A) = ∑
j

 p(aj) H(C|aj)   

Because ID3 works by successive partition, the classification tree can be
constructed recursively.  In pseudocode, the ID3 algorithm is:

Procedure Split(C,V)
{Find the optimal partition of the data set C based on the features
in V}
begin
Find A in V that minimizes H(C|A)
for each value aj in A do
if H(C|aj)>0
 then

Define the subset C*={C|A=aj}
Define  V* = V-A               {remove A from V}
Split(C*,V*)              {partition the subset}

 else
Finished       {all cases in C have the same value}

end

In words, ID3 starts by choosing the feature that maximizes the probability of
correctly classifying the cases.  It then splits the cases into M subgroups based on their
value on that feature.  For each of those subgroups, the Split procedure is repeated to find
which of the remaining features provides the best classification within the subgroup.
This choice can be—and usually is—dependent on the variable choices already made.
The chosen feature is used to generate sub-sub-groups, and the Split procedure is repeated
on those groups.  The procedure is repeated until all of the cases in a subgroup have the
same value for the dependent variable, or until one runs out of features.

Because ID3 uses different features depending on the subset being classified
(equivalently, depending on where it is in the tree) a classification tree is quite different
from a contingency table.  In a contingency table, the nesting of variables is identical for
all cases, whereas in a classification tree, a feature necessary to classify one set of cases
may be irrelevant for others.  For example, in building a classification tree that identified
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birds and mammals, the branches involving “birds” would presumably ask questions
about beaks and feathers; those questions would not be asked about mammals.

On the surface the asymmetry of the tree leads to a more complex knowledge
representation structure than those traditionally used in social science research.  In terms
of the information demands, however, this approach is more robust against extraneous
data, and makes more efficient use of the available information.  If a feature contributes
nothing to the classification of a subset, it can be ignored and have no effect on the
classification within that subset.  This is particularly useful in historical and cross-
national data sets where there is likely to be a great deal of missing data.  In addition, if
two features carry redundant information, one of them will simply be ignored in ID3,
instead of creating the collinearity problems one would find in a comparable situation in a
linear model.

A rather quirky but useful aspect of ID3 is that a missing value can be treated the
same as any other value and under some circumstances the missing value will contain
information.  For example, as any user of survey research information knows, people who
are never home, who terminate interviews early or who refuse to answer certain questions
are not randomly distributed: their missing answers may reveal something about the case.
Infant mortality statistics are missing for rural areas in developing countries because
those areas have inadequate education, communication and medical personnel, but those
characteristics are also usually associated with high infant mortality.  The presence of a
missing value can sometimes be used to infer additional characteristics of a case.

In a data set with a large number of features, ID3 will usually classify 100% of the
cases correctly.  The only situation where this fails is when two cases are identical on all
features and have different values for the dependent variable.  This indicates that the set
of variables being considered is not sufficient to correctly classify all of the cases in the
sample.  While 100% accuracy sounds impressive, its practical value is limited because
many roots of the tree terminate in single cases.  To ascertain the predictive value of the
variables, one must use a split-sample test, building the tree on part of the data (training
cases) and then testing it on the remaining part (test cases).

This study uses “bootstrapping”, a method used in statistics to empirically ascertain
the stochastic structure of a non-repeatable set of data (see Mooney and Duval 1993).
Instead of doing a single training and validation test, I analyze a large number (50 to 200)
of random split samples.  The basic bootstrap involves:

for i:=1 to Number_of_Experiments
   begin

Randomly select half of the cases as a training set
Compute a tree describing that sample using ID3
Classify the remaining cases using the tree
Compute statistics on the accuracy of the classification

   end
Compute summary statistics

Construct trees using only the most frequently used variables

This method in effect does a series of “what-if” experiments to determine how
accurately ID3 would predict the unknown cases if only half of the cases were known.
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Bootstrapping can also be used to determine which variables are most commonly
used in building the trees, then a simplified tree can be constructed using only this subset.
This has two potential advantages. First, it provides parsimony with respect to the
information required to classify a case, eliminating redundant features. Identifying the
subset of features with the highest level of information is analogous to the use of stepwise
regression (in the absence of collinearity) in statistical modeling. Second, there is a
potential trade-off between accuracy and generality. Because ID3 usually classifies cases
with 100% accuracy, it has no generality; it uses every bit of information required to
classify the case.  The resulting tree may over fit the training set and then fail on many
cases in validation set because of its specificity.  By forcing ID3 to use a smaller number
of features, rules can be kept more general to avoid over-fitting.

Application
Data in this example are from the Butterworth “Interstate Security Conflicts, 1945-

1974” data set (Butterworth 1976; ICPSR 7586).  This is described in Appendix A: the
set covers 310 cases of interstate conflict and codes 47 variables dealing with conflict
characteristics, actions to manage the conflict and the outcome of that management.9

Two measures of fit were computed.  The first was simple accuracy

Accuracy = 
correct predictions

total cases
 

The problem with the accuracy measure—in Butterworth and most other
international relations data—is that the data are heavily modal.   International affairs are
boring: the same thing happens most of the time.  Because the modal category accounts
for about 55% to 75% of the cases, the simple rule “predict the mode” has an accuracy of
55% to 75% and is a tough horse to beat.

The mode, however, is an unsatisfactory null model because it has little practical
utility.  A model should be able to predict non-modal cases as well as modal cases.  In
particular, foreign policy analysts can be excused—up to a point—for inaccurately
predicting cases where a crisis does not in fact escalate provided they manage to correctly
predict the cases that do escalate.  In other words, there is more value to predicting rare
events than common events.

There are a variety of measures of rarity but since ID3 uses an entropy framework,
the obvious weight is the entropy measure ln(pi).  The second measure used in this

analysis measures “entropy explained”:  Let

                                                  

9Variables dealing with characteristics and management actions were treated as independent variables.
Variable 23 ("Specific agent") was not included in the analysis: this contains 45 categories and in many
cases there is only one conflict per category due to the specificity of the agent (e.g. "Pope Paul
VI","US/Argentina/ Brazil/Chile").  In ID3, this variable would have a large amount of discriminatory
power since it predicts many single cases; equally obvious is that it would have no generalizability.  The
general character of the management agent (i.e. states, type of international organization, individuals) is
coded in variable 22, "Management Agent".   Since this test deals only with nominal variables, "Number of
Agents" is not included.
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ME = ∑
i

 





correct predictionsi

cases
 ln(pi)            (Model entropy) 

DE = ∑
i

 pi ln(pi)                                        (Dependent variable entropy) 

then

Entropy Ratio = ER = 
ME
DE

 

The index i is over the values of the dependent variable; pi in both equations is the

proportion of each value in the observed cases of the dependent variable.  ER will vary
between 0.0 (no correct predictions) and 1.0 (perfect prediction).  ER can be computed
for the modal prediction as well as the ID3 predictions and the two compared.  Because
the natural logarithm of a number is equal to a constant times the logarithm base 2, there
is no loss of generality in using ln(p) rather than log2(p).

Results
The results reported here are based on two series of computer runs that occurred in

two stages.  First, two sets of 200 Monte-Carlo split-sample tests were run and aggregate
statistics were recorded on how frequently each independent variable was used in the
classification tree and on the fit of the trees using the validation set.  Based on these
results, a series of 50 split-samples were done using the N most highly ranked variables
where 3 < N < 10.  This provides an indication of the accuracy of trees using a small
number of variables.

This design was done with two different sets of features.  The first set included all
38 of the features; second deleted the four “Technique of Management” features.  The
second set was considered because the “Technique of Management” features had a
comparatively large number of categories and were therefore used quite frequently.  The
specificity of these features also made them suspect as predictors, since the management
technique is presumably closely related to the outcome expected by the human conflict
managers.  Most of the remaining features, in contrast, refer to objective characteristics of
the conflict situation.

Classification Trees

Classification trees were initially constructed using the complete set of features.
Unsurprisingly, given the large number of features, these trees correctly classified 100%
of the cases.  The trees were fairly parsimonious, only rarely going deeper than five
levels, though this parsimony was substantially enhanced when the “Technique of
Management” variable was used to initially partition the set.

A simplified (as these things go…) classification tree for the Stopping Hostilities
variable is presented in Table 5.1.  This tree uses only the best five features identified
from the bootstrapped ID3 on the 34-feature set: leadership, type of issue, fatalities,
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action and strongest antagonist.  The 89.8% of the 98 cases are classified correctly;
erroneously classified cases are in italics.10

At a number of points in the tree, only some of the values of the feature are used as
branches; this occurs when the other values did not occur in the subsets examined at that
node.  If the system encounters an independent variable value that is not present at a
node, it creates a new “unrecognized value” node that predicts the modal value of the
dependent variable in the subset of cases being considered at that point.11  This doesn’t
happen in the tree displayed here because the entire set of cases was used for training but
it occurs fairly often (10%-20% of the cases) in the Monte Carlo process.

In examining the tree in Table 5.1 and similar trees for the remaining four
dependent variables (see Schrodt 1987b), several things are apparent.  First, despite the
fact that only five of the original 40 features in the Butterworth set are used, the
classification accuracy is very high: between 95% and 100% as measured by either
simple accuracy or entropy-explained (ER).  The accuracy and ER measures have
roughly the same values, and the tree does a better job of classification than the single
rule “predict the mode”.

Second, the trees are fairly complex, though not so complex as to always terminate
in single cases.  The Stopping Hostilities tree in Table 5.1 uses 26 roots to classify 98
cases with 90% accuracy and in general the number of roots in the ID3 trees were
proportional to the number of cases classified.  The tree on which Table 5.1 is based
originally used 69 branches to classify those cases with 99% accuracy, so the number of
roots of the tree can be reduced by 62% while giving up only 9% in accuracy.

                                                  

10 Classification trees for the remaining variables are provided in Schrodt (1987b).  Table 5.1 is based on
the tree presented in Schrodt (1991c) but in the interests of space, it has been substantially simplified by
combining similar branches.  The order in which the classification features are used has not been changed.

11 The classification program processed these situations automatically and the nodes are not shown in the
tree.
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Table 5.1.  Classification tree for “ Stopping Hostilities” using five features

Leadership
  2 superpowers | 10 15 304  <1>
  Middle powers | 92 178 260 273  <0>
   1 superpower | Type of Issue
                      Cold War | 67 83 89 95 263 274 <0>  21 [1]
               Internal, gener | 158 250 291  <0>
                      Colonial | Fatalities
                                       26-100 | 69  <0>
                                         >101 | 16 167 <2> 63 [0]
               Interstate,gene | Fatalities
                                         1-25 |Strongest Antagon
                                              Smallest Power|99<2>
                                                Small Power |25<0>
                                       26-100 | 125  <2>
                                        Other | 53 52 47 <1>
   Large powers | Strongest Antagonist
                  Middle Power | 264  <1>
                         Other | 100 122 228 162 <0>
   Small powers | 108 229 4 62 96 216 97 <0> 282 [2]
Smallest powers | Fatalities
                        0 - 25 |  192 221 258  <0>
                        26-100 | Strongest Antagonist
                                 Middle Power |  161  <0>
                                   Other      |  110 259 <1>
                          >101 | 202 223 257 269 143 213 253 86

                                      103 227
                               | 43 65 68 154 179 239 217 265

                                      310 <0>
                               | 114 128 196 [1]
    Sec-general | 159 194 277 302 308 <0>  280 [1]
   Inapplicable | Fatalities
                         0-100 |  292 57 <0>
                        101-1K | Action
                                 Coercive ops | 175 231  <2>
                                        Other | 30 132 190 244

                                                     281 <1>
                                              | 75 243 [2]
                         1K-2K |  119 130  <1>
                        2K-10K | Strongest Antagonist
                                 Middle Power |   29  <1>
                                   Superpower |  139  <0>
                          >10K | Strongest Antagonist
                                  Large Power | 245 11 <1>
                                        Other | 118 211 218 285

                                                    207 301 <0>
                                              | 298 [1]

Key: the features are in bold face, the values are in plain text followed by |.  Each level of indentation represents
another level of the tree; at the root of the tree the set of numbers identifies the case numbers (Butterworth 1976) that
were classified at that root, and the number in ‘< >’ is the value of the dependent variable for those cases.  Incorrectly
classified cases are indicated by italics.
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Third, most of the cases are classified without going very deeply into the tree.
Usually cases begin to be classified at the third level of the tree; in other words, knowing
the values of only three variables allows some correct classification.  While the global
structure of the tree is relatively complex, the local structure required to classify a
particular case is simple, and the individual rules are certainly well within the information
processing capabilities of humans.

Rank-Order Results

Tables 5.2 and 5.3 give the aggregate results for the Stopping Hostility variable for
both the 38- and 34-feature sets.  Several statistics are presented:

• Modal prediction Accuracy and ER: The values of these statistics that would be
obtained following the rule “predict the mode”.

• “Accuracy”, “Average ER”: The average values for each statistic across 200 split-
sample tests

• Level where used: This shows the frequency with which each feature was selected
for use in the trees.  Level 1 is the top of the tree, the first feature used to partition
the cases.  Levels below 5 are not recorded: use of features at the lower levels are
reflected in a difference between the total of the levels and the Total frequency.

• Total: The total number of times a feature was used in the tree.  If a feature is used
more than once in the same tree, it is counted multiple times.  The rank-order of the
feature in the table is based on this value.

Examining Tables 5.2 and 5.3 and comparable tables for the remaining dependent
variables in Schrodt (1987b) revealed several general characteristics of the trees
generated in the bootstrap samples.  First, the trees rarely go very deep: level 5 is close to
the limit.  Despite the availability of more than 30 features, five or fewer features seem to
almost always suffice for classification.  This may be due in part to the sample size since
the split-samples have only fifty to one-hundred cases and log2 64 = 6.

Second, there are definite patterns in the choice of features used.  The frequencies
of the use of a feature generally seem to follow a rank-size law 12 and there is a great deal
of consistency in the choice of features used to classify the different dependent variables.
Features are clearly not being chosen at random, though all of the features are used at
least once.  The rank-orders produced by the two independent Monte-Carlo runs on each
of the data sets were also quite similar, particularly for the most commonly used features.
As expected, the “Technique of Management” features were used frequently when
available, but these had little effect on the relative rank of the remaining features except
for “Action”, which apparently carries much the same information as the “Technique”
features.

                                                  

12 The frequencies are proportional to the rank-order of the variable; the second-most-common variable
has roughly half the frequency of the most common, the third-most-common has one-third the frequency
and so forth.  This phenomenon, known generically as Zipf's Law, is found in an assortment of empirical
distributions such as word counts in manuscripts and the populations of cities.
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Table 5.2.  Summary of B/ID3 experiments for Stopping Hostilities with All
Management Action features included

Modal prediction ER = 0.329
Modal prediction Accuracy = 0.653

Accuracy = 0.583
Average ER= 0.407

   Level where Used     Total          Feature
   1   2    3   4   5  
   66   97   16    1    0 |  180  Tech of Management Action(1st)
   21   92   40    1    0 |  154  Leadership
   69   60   22    0    0 |  151  Tech of Management Action(2nd)
    0   90   46   12    0 |  148  Fatalities
    0   67   26    1    0 |   94  Strongest Antagonist
    0   47   38    4    0 |   89  Likelihood Disappear.
    0   45   31    5    1 |   82  Likelihood Abatement
    0   38   39    3    0 |   80  Duration
   38   23    3    0    0 |   64  Tech of Management Action(3rd)
    0   41   13    1    0 |   55  Type of Warfare
    0   31   20    0    0 |   51  Type of Issue
    0   32   16    3    0 |   51  System Period
    6   26   12    2    0 |   46  Action
    0   23   14    4    0 |   41  Level of Agreement
    0   23   14    2    0 |   39  Alignment of Parties
    0   23   16    0    0 |   39  Other Managers
    0   22   13    2    0 |   37  Agent’s Autonomy
    0   20   15    1    0 |   36  Strategic Category
    0   20    9    3    0 |   32  Likely Degree of Spread
    0    7   19    3    0 |   29  Initiative for Intervention
    0    5   20    4    0 |   29  Agents Relative Power
    0    8   15    5    0 |   28  Agents Previous Role
    0   11   14    0    0 |   25  Agent’s Bias
    0   11   10    1    0 |   22  Degree of Spread
    0   15    5    1    0 |   21  Previous Involvement
    0   15    4    1    0 |   20  Phase of Agent’s Intervtn
    0    9    9    2    0 |   20  Management Agent
    0    9    9    2    0 |   20  Past Relationship
    0    9    8    1    0 |   18  Ethnic Conflict
    0   12    3    0    0 |   15  Phase of Agent’s First Action
    0   11    2    1    0 |   14  Likhd Superpower War
    0    6    5    1    0 |   12  Joint Leadership
    0    7    3    2    0 |   12  Great Power Interests
    0    1    8    2    0 |   11  Phase of Agent’s Strongest Act
    0    6    3    1    0 |   10  Ideological Conflict
    0    2    5    1    0 |    8  Agents Primary Role
    0    6    1    0    0 |    7  Tech of Management Action(4th)
    0    5    1    0    0 |    6  Power Disparity
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Table 5.3.  Summary of B/ID3 experiments for Stopping Hostilities with no
Management Action features

Modal prediction ER = 0.329
Modal prediction Accuracy = 0.653

Accuracy = 0.581
Average ER = 0.430

   Level where Used     Total     Feature
   1   2    3   4   5  
   19  209   67    0    1 |  296  Fatalities
  115   44   43    5    0 |  207  Leadership
   54   51   33    3    0 |  141  Action
    6   79   25    0    0 |  110  Strongest Antagonist
    1   78   24    1    0 |  104  Type of Issue
    1   48   34    5    0 |   88  Likelihood Disappear.
    0   52   33    2    1 |   88  Alignment of Parties
    0   44   35    2    0 |   81  Likely Degree of Spread
    0   34   43    2    0 |   79  Duration
    0   24   47    5    0 |   76  Likelihood Abatement
    0   24   48    3    0 |   75  Level of Agreement
    0   13   33    1    0 |   47  Degree of Spread
    0   15   30    0    0 |   45  Agent’s Bias
    0   17   22    4    0 |   43  Other Managers
    0   14   27    1    0 |   42  Strategic Category
    0    6   34    1    0 |   41  Previous Involvement
    0   14   21    2    0 |   37  System Period
    2    7   22    1    0 |   32  Type of Warfare
    0    8   21    2    0 |   31  Agent’s Autonomy
    0   12   12    2    0 |   26  Ethnic Conflict
    0    6   16    0    0 |   22  Power Disparity
    0    2   19    1    0 |   22  Agents Relative Power
    0    9   10    1    0 |   20  Past Relationship
    1    7   12    0    0 |   20  Management Agent
    0    6   12    0    0 |   18  Agents Previous Role
    0    7    9    0    0 |   16  Initiative for Intervention
    0   10    4    0    0 |   14  Phase of Agent’s First Action
    1    1   12    0    0 |   14  Phase of Agent’s Intervtn
    0    3    9    1    0 |   13  Ideological Conflict
    0    3    7    1    0 |   11  Phase of Agent’s Strongest Act
    0    4    6    0    0 |   10  Joint Leadership
    0    5    5    0    0 |   10  Great Power Interests
    0    4    5    0    0 |    9  Agents Primary Role
    0    4    1    0    0 |    5  Likhd Superpower War
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Distribution of Accuracy and ER

Both the accuracy and ER measures are roughly normally distributed; Figure 5.1
shows the distributions of ER.  In none of the cases examined did either accuracy or ER
exhibit any noticeable departure from a bell-shaped curve.  While I did not compute
standard deviations on these distributions, they appear to be about 0.07 for Accuracy and
0.1 for ER.  Because the distributions are essentially normal, the discussion of these
summary statistics will be done with respect to their means, reported in Table 5.4.
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Figure 5.1.  Stopping Hostilities

As expected, the mean accuracy of the bootstrapped models was well below that of
the modal prediction.  If simple predictive accuracy is the only criterion, just use the
mode.  In contrast, the ID3 trees consistently did about 20% to 30% better than the mode
on the ER measure.  The 34-feature models have a slight advantage over the 38-feature
models on the ER measure: while numerically this is small it is probably statistically
significant given the size of the samples.  While the accuracy and ER statistics are not
overly impressive, note that these measures are computed on split-sample tests—the
training set contained none of the cases from the validation sets.  Since the classification
trees are generally 100% accurate, the accuracy and ER on the total sample would be
around 0.7 to 0.8 for the total set when only the training set was used to construct the
tree.13

Table 5.4.  Fit of the Model

Variable 38 Model* 34 Model* Mode
                                                     Acc       ER        Acc       ER        Acc       ER 
Stopping Hostilities .583 .407 .581 .430 .653 .329
Abating the Conflict  .503 .401 .495 .407 .568 .342
Isolating the Conflict .668 .397 .663 .414 .745 .303
Restraining the Conflict .484 .407 .484 .416 .545 .344
Settling the Conflict .619 .370 .603 .372 .734 .300

*Statistics for ID3 are mean values over 200 bootstrap experiments

                                                  

13 0.50 + 0.5*ER (or Accuracy).
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Number of Features

Some additional experiments were done by varying the number of features allowed
in the classification tree to see how much information was gained or lost as a function of
the depth of the tree.  When features were added according to their rank order in the
initial experiments, the number of features used in the tree can be reduced to about 4 or 5
without much loss in either ER or Accuracy.  In some cases trees based on the reduced
set of features classified the validation cases slightly more accurately than trees based on
the full set of features.

This has two implications.  First, the features coded in the Butterworth data are
quite redundant with respect to predicting the dependent variables studied here—a small
subset have much the same classification information as found in the full set.  However,
not just any subset will work: In separate set of experiments I progressively deleted the
most frequently used features, and as the features that were the best classifiers were
eliminated, the average values of Accuracy and ER declined.  Second, based on these
experiments, the bootstrapped ID3 can be used as a technique to identify the sub set of
features with the most general classification power.

Discussion
The first conclusion is simply that the bootstrapped ID3 technique works for the

purposes of both classification and identifying a core set of features.  Applied to a set of
data with between 100 and 200 cases and 38 features, the method is able to identify a
small set of features that achieve between 95% and 100% accuracy when used to
construct a classification tree for the entire data set, and can do better than the mode in an
entropy-based measure in split-sample tests.  The technique appears to be quite robust
and did not exhibit any unusual behaviors in any of the various tests.  While the
technique is computationally intensive, most of this comes in doing the bootstrapped
tests; the ID3 algorithm itself is reasonably efficient.

A more sophisticated application of these same methods is found in Fürnkranz et al
(1994), which applies an ID3 method (Quinlan’s C4.5 algorithm) to the analysis of
Bercovitch’s international mediation data set (Bercovitch and Langley 1993), which is
structurally similar, though larger and more detailed, than the Butterworth data.

The general results of the Fürnkranz et al work are similar to those found here: a
full-sample analysis of the 718 cases in the data, using 52 attributes, results in nearly
perfect (99.7%) accuracy, but this drops to only 40% accuracy in cross-validation testing
with split samples.14   The initial tree, however, has some 547 nodes, and most of these
terminate in single cases.

Using C4.5, the researchers go on to apply several tree-pruning methods with
considerable success.  Two methods of pruning are used.  First, complex rules are
collapsed into simple rules even if this results in a small number of erroneous predictions.
Second, a minimum cluster size limit is imposed to eliminate the single-case branches.

                                                  

14 The dependent variable is the success or failure of the mediation attempt; unlike the Butterworth
example, the cases are fairly evenly split between the two values 57% failures and 43% success.  The cross-
validation was done by dividing the sample into ten subsets, fitting on the data in nine of those, and then
testing on the remaining 10th; the out-of-sample accuracy is the average accuracy across these ten tests.
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These experiments typically result in a classification tree with about 20 modes, and
increase the cross-validation accuracy to 45%.

Decreasing the number of variables also is effective at improving the accuracy, and
this method has more dramatic results in the Bercovitch data than in the Butterworth data.
Limiting the depth of the tree the four variables found most salient by the procedure
results in only 76% percent accuracy on the training data, but in cross-validation tests the
accuracy remains at 68%.

Given the effectiveness of simple machine-induction methods such as ID3 there
seems to be little point in constructing rule-based expert systems classification trees
solely by hand.  Human expertise is still necessary to identify a set of relevant features,
but if a classification tree is the desired knowledge representation structure, then ID3 will
probably produce a far better global structure than a human expert can devise.  Machine
induction is superior to human induction in constructing classification rules just as
statistical regression is superior to eyeballing when constructing a least-squares line.

From the standpoint of human cognition about international affairs, these
experiments may partially explain why very different models of international conflict
seem to have similar levels of empirical accuracy.  When measured in split-sample tests,
in regularity in the conflict data isn’t very great, so any model making predictions outside
the set of cases used in its construction will contain considerable error.  Models
predicting future behavior on the basis of behavior observed in the past have this
characteristic.

While human analysts do not look at all historical data in the systematic fashion of
ID3, a sophisticated analyst may go through a mental procedure not unlike a bootstrap in
examining a number of cases—usually the “classical” cases identified by an organization
or a paradigm rather than a random sample—and sequentially adjust his or her mental
classification model to correctly predict those cases.  As these ID3 experiments indicate,
the redundancy in the data would allow two analysts or organizations to construct very
different, but perfectly-fitting models from their selected cases, and still find that those
models fit just about as well on future cases.  In other words, two quite different models,
based on quite different interpretations of history, may still predict at about the same
level of accuracy.

Somewhere in the Butterworth data set we encounter a limit on the predictability of
international events, at least so far as international conflict is concerned.  ID3 in effect
eliminates parsimony as a source of model error—the model is allowed to reach 100%
predictive accuracy on the training set, which a linear model, in general, would not do.
Despite this, the trees are relatively parsimonious—they do not nest very deeply and a
small number of features will correctly classify most of the training cases.  But 100%
accuracy on a training set does not lead to 100% accuracy on the validation set: 50%
accuracy is more common.  In other words, on average about 50% of the cases in the
validation set are not described by information from the training set when the two sets are
chosen randomly.  This gives some idea of the degree of unpredictability likely to be
encountered in forecasting future crises, at least when using the variables of the
Butterworth data set.

Consider two extreme cases of a classification algorithm attempting to create rules
to identify birds.  At one extreme we could have a data set consisting 1,000 separate bird
species, i.e. the dependent variable has 1,000 different values.  Here, the accuracy of ID3
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in split-sample tests is zero—none of the validation cases overlap with the training set
and therefore none can be predicted.  At the other extreme, suppose the data set contained
only 10 very distinct species.  In this instance, the split-sample accuracy would be close
to 100%, because a case would be misclassified is if it had no representatives in the
training set.  That would occur with a probability of roughly 0.99500, a very small
number.

The Butterworth conflict data are somewhere between these two extremes.  It has
sufficient replication that about half of the validation cases are classified correctly.  In
contrast to most statistical treatments, the errors are not due to limitations of the learning
method or the knowledge representation scheme, since the method correctly classifies
100% of the training cases when using the full set of features.  That accuracy says little,
however, about the chances of classifying an unknown case correctly, and only the
bootstrap tests provide a measure of how likely the variables will predict unknown cases.

Genetic Algorithms15

Genetic algorithms (GAs) are a general form of machine learning based on the
evolutionary processes of selection, mutation and recombination.  This approach was
originally proposed in John Holland’s  Adaptation in Natural and Artificial Systems
(1975).  Holland’s focus was the study of general techniques by which a problem-solving
device could improve its performance in an evolutionary fashion.  The problems of
interest to Holland were characterized by:

• The impossibility of enumerating all possible devices for solving the problem.

• The performance of a device had a large number of local minima: i.e. the initial
introduction of a component might initially degrade performance even if it
ultimately improved performance.

• The structure of the problem-solving device was sufficiently complicated that it
was not always obvious which components were responsible for improvements in
performance

Complexity of this sort constrains the type of optimization techniques that can be used to
develop problem-solving devices, and in particular classical techniques for optimization
are of very little value in these circumstances.

The international environment has many of these characteristics.  The problems
confronting a foreign policy organization have high dimensionality, noise, slow and
imperfect feedback, and a number of locally-optimal points, so developing a workable
foreign policy is quite different from designing a bridge or calculating the optimal price
for colored contact lenses.  If Holland’s theory is correct, the evolutionary approach to
formulating policy may not be merely a fallback position imposed by information
processing constraints, but might actually be one of the few effective problem-solving
methods available.

Holland used biological genetic evolution as a metaphor for problem solving
because evolution has produced billions of devices capable of functioning in a

                                                  

15Parts of this section appeared earlier in Schrodt (1986b) and Schrodt (1989a).
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continually changing, nonlinear, stochastic environment.  Genetic evolution uses a fairly
simple chemical device, DNA, to construct a cascading series of other chemicals that
ultimately produce an organism that will produce more DNA.

Holland’s theoretical contribution was the development of a general scheme for
describing how such adaptive mechanisms might function, and showing how they could
be simulated on computers.16  The general Holland system uses a gene-like system,
applying selective recombination and mutation to develop new problem-solving
structures, and makes extensive use of feedback through a performance function to select
of ever-improving devices.  New rules are produced from existing rules by “mating” rules
that have strong performance using genetic “cross-over”: the first k bits of one rule are
combined with the last N-k bits of the other to produce a new rule.  A critical feature of
mating is that the probability of reproduction is proportional to the relative strength of the
rules—only the strong rules survive and reproductive success is directly proportional to
strength.17  Mutation is also applied to the new rules, which allows the possibility of
producing new rules with components that were not were in the original system.

The example I will use to demonstrate genetic algorithms involves prediction, but
the GA method is particularly well suited for the development of complex strategies.  For
example, Axelrod (1987) uses GAs to find strategies for playing Prisoners’ Dilemma
games; on a purely self-organizing basis, the system constructs a number of strategies
that do as well as tit-for-tat, but are usually somewhat distinct from tit-for-tat.  Similarly,
I’ve experimented with determining whether a GA can develop strategies for playing
zero-sum games with mixed strategy solutions; the system almost always finds the
mathematically optimal mixed strategy for one of the players.18  While the strategies
derived by the GA are known for the zero-sum games and Prisoners’ Dilemma, GAs
might be effective in discovering strategies for games where analytical solutions are not
known; Kollman, Miller and Page (1992) provide an example in the context of the
adaptation of political party platforms.

Genetic Algorithms and Bureaucratic Learning
GAs are attractive as models of political learning because the evolutionary

development of organizational rules is often quite explicit, and much of this development
is based on selection.  The GA’s mechanisms of mutation and recombination capture in
an abstract fashion the experimentation and imitation of bureaucratic and individual
learning.  The system creates new problem solving strategies on the basis of old strategies
that were partially successful, while maintaining successful old strategies. While GAs

                                                  

16 Grefenstette 1987; Davis 1987; Rawlins 1991; Koza 1992; and Michalewicz 1992 are several general
introductions to this approach.

17Without this, evolution occurs only randomly.  The difference between the results reported here and the
less successful system described in Schrodt (1986a,1986b) are due to a change from random mating to
strength-based mating.

18 In these experiments the sets of rules played against each other.  The optimization halts when one player
has found the optimal mixed strategy because once that strategy is played, all mixed strategies used by the
other player produce the same results—the defining characteristic of the optimal mixed strategy in zero-
sum games—and consequently there is no selective pressure on the second player's strategy.
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make no attempt to actually simulate human learning, they show the classical learning
curve of human learning, and  exhibit some learning dilemmas such as the tradeoff
between optimally adapting to a fixed environment (high performance/low flexibility)
versus maintaining the ability to adapt to new environments (lowered performance/high
flexibility).  GAs can also exhibit elements of “artificial stupidity”, where an organization
becomes caught in a locally maximal behavior pattern that has low overall performance.

The evolutionary aspect of rule development was discussed in Chapter 3 and is
widely evident is most organizational behavior.  In the its written rules and procedures of
an organization this evolution is explicit and could, with sufficient effort, actually be
traced over time, but evolution also applies to the informal rules and norms of behavior.
The population of rules governing an organization is under selective pressure—intense in
a competitive business environment or a rapidly changing international situation, weak in
the day-to-day workings of foreign policy—and a rule that causes a major problem will
be discarded.

Adaptation proceeds using both imitation and experimentation.  Even a “new”
organization or policy—for example the human rights initiatives introduced by the Carter
administration—is likely to contain large elements of policy and practice adopted with
little or no modification from earlier policies.  For example the Carter human rights
policy drew on earlier United Nations initiatives as well as programs and criteria
developed by private organizations such as Amnesty International, and used a
combination of diplomatic and public relations techniques previously developed in other
contexts.

The genetic algorithm, with its random mutations and recombinations, is probably
much less efficient than the experimentation and imitation of a human organization.
Human organizations can use foresight and planning to consciously seek out solutions
that are likely to work and discard without trying many of those that are likely to fail.
When the international environment presents novel situations where those consequences
are not known—for example, new phenomena such as Nazi Germany, nuclear weapons,
guerrilla movements with access to the international arms market or Shi’a
fundamentalism in Iran—then even a search for policy options assisted by deductive
foresight may be little different than a random evolutionary search.  In other words, once
a general policy has been found by adaptation, deduction allows the strategy to be fine-
tuned in a relatively systematic fashion, but this does not work for the big picture.19

The evolutionary approach is not a sure path to an optimal solution, nor even a
satisficing solution.  One risk, found in biological populations as well as artificial ones, is
“genetic drift”: the population of rules may become sufficiently uniform that mutation
and recombination no longer significantly change them.  This is unproblematic in a fixed
environment but causes major difficulties when the environment changes.  For example,
corporate giants such as IBM, Sears and General Motors and the Communist parties of
Eastern Europe evolved bloated bureaucracies and volumes of rules to insure that policies
developed by managers in the 1950s were still adhered to by their grandsons and
granddaughters.  These organizations, well adapted to the 1960s and 1970s, found
themselves at a substantial disadvantage in comparison to smaller organizations with very

                                                  

19 The contemporary debate on the implications of the end of the Cold War is an excellent example of this:
it shows little consensus, even among individuals sharing similar theoretical perspectives.
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high experimentation/mutation rates—less well adapted but substantially more
flexible—when their environments changed in the 1980s.  This drift that can ultimately
lead to the catastrophic failure of an organization is a direct consequence of the
mechanisms that allowed the organization to initially succeed.

Application
To illustrate the use of a genetic algorithm in the context of international behavior,

I will focus on a very simple problem of short-term prediction using a Holland classifier,
one of the most widely studied GAs.20  The Holland classifier is based on a production
system-like scheme with three components: messages, a rule-base, and a “bulletin board”.
The overall scheme works as follows.

1. Messages are posted on the bulletin board to describe the situation.

2. The bulletin board is scanned by the rules for messages that match the classifier of
the rule.  If a match is found, the rule “bids” for the right to replace that message with
the rule’s result.  Bids are based on the strength of the rule and the specificity of the
match.

3. The highest bidding rule gets to replace the message.  It then pays the bid to the rule
that posted the message it responded to.

4. This process continues until a terminal message is posted, which becomes the
classification.  The rule posting the terminal message is rewarded with a payoff.
This payoff is positive if the terminal message is the correct classification (based on
some evaluation function); it is negative if the classification is incorrect.

I have called this process of posting a single message (i.e. data point), bidding, and
classifying (i.e. predicting) an “experiment”.

Rules in the Holland system consist of three parts: a “classifier”, a “result” and
“strength”.  Strength is a number; the classifier, result and messages are all strings of
symbols of the same length.   Rules in effect are if...then statements like those used in
expert systems: the classifier is the antecedent and the result is the consequent.  Holland’s
scheme uses an alphabet with three values:

0 feature is absent

* pass-through: feature may be present or absent

1 feature is present

                                                  

20 Holland's description of the classifier is found in Holland (1986); Goldberg (1989; chapters 6 and 7)
provides a very readable description as well as the discussion of a number of applications.

My version of the classifier differs from Holland's in several details, though none of these are critical to the
underlying logic of the process.  The major difference is my initializing the system via historical learning
and my use of a loose rule-matching criterion.  In Holland's system, a rule can bid for a message only if it
matches the posted message exactly except for pass-through characters.  My system instead makes bids
proportional to the strength of the rule and the degree of fit, rather than insisting on exact fits.  A rule and
message must meet at least a minimum level of fit controlled by the parameter Match_Minimum.  If two
rules make identical bids, the first bidder will win; rules are periodically shuffled in order to randomize
this.
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The same alphabet is used in the result, with the provision that the value encountered in
the message matched is substituted for the pass-through character, so messages contain
only [0,1] values.

The process of competitive bidding and payoffs for posting terminal messages
insures that the rules that have been the most successful in posting correct messages in
the past will be most likely to do so in the future.  Rules posting meaningless or incorrect
messages are reduced in strength so that they are less likely to bid successfully.
Similarly, the requirement that rules pay the rules that posted the messages to which they
responded means that rules can gain strength by setting up situations that lead to the
successful posting of a terminal message, a process Holland calls the “bucket brigade”.

Main Classifier Loop

Loop
With each message do
With each rule do

1. Compute Match(Rule, Message)
2. Compute
         Bid=Match*Strength*Bid_Weight
3. If Bid>Highest Bid for Message then

Replace Bid_Winner with Rule
End_With {rule}
With Bid_Winner do

1. Subtract Bid from Strength
2. Add Bid to Strength of Rule which posted Message
3. If Bid_Winner’s Result is a Prediction
     Then

1. Compute Payoff by comparing prediction to actual
          events.

2. Add Payoff to Strength
3. Remove Message from Board

     Else
1. Replace Message with Result on Board

End_With { Bid_Winner}
End_With {message}
End_Loop

The loop is continued until one of three conditions has been met:

1. There are no messages left on the board
OR
2. All bids for rules are below a set threshold (i.e. none of

    the rules match the messages particularly well)
OR
3. The loop has been repeated more than a set number of times.

    This rule prevents infinite looping due to recursive
    parasitic rules whose classifiers match their own output
    messages.

Implementation
Converting prediction to a classification problem is simple.  A set of N events can

be coded in the Holland scheme as a binary string of length N, where a 1 in position k
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indicates that event k is in the set; a 0 means the event is not in the set.  The system was
tested using COPDAB event data on three North Atlantic dyads for 1948-78; the details
of the coding are described in Appendix A.  The COPDAB coding scheme uses 15
categories of events, ranging from 01 for highly cooperative events such as two nations
merging to 08 for demonstrations of indifference to 15 for major violent hostilities.

The COPDAB data were used to generate event sets I’ve called “archives”; this is
the set of events in a time period, coded for occurrence without regard to frequency.  A
prediction problem is created by choosing a random date T and then coding the following
archives (the metric is days):

Input messages: [T-1  to T-10]
[T-11 to T-20]
[T-21 to T-30]
[T-31 to T-40]

Output occurrence: [T to T+20]

In other words, the system attempts to predict the types of events in the dyadic
relationship for a twenty-day period based on the events in four previous ten-day periods.
The coding allocated 16 bits to the events and 4 for the lag.  This gives a surplus of at
least two bits (and actually more, as event types 01, 14 and 15 aren’t found in the data)
that the system could adapt to identify intermediate rules.

The initial rules in the system were generated by reading a random set of data
records, randomly choosing one of the lagged archives as the classifier and the output
archive as the message.  Both parts of the rule were then randomly mutated by changing
some of the bits to a pass-through character.  This captures, in a primitive fashion, the
notion of precedent: the initial rules are based on earlier observed sequences.  Data
archives from each of the COPDAB sets were sampled in random order rather than
sequential order in order to avoid biasing the system with the lower-density data that
occurs in the early years of the data set.  In order to limit the amount of running time to
something reasonably finite—these experiments were done on an Apple II!—a set of only
32 rules was used.  A couple of non-evolutionary runs were made with 128 rules and no
major differences were observed.

The input archives, with information identifying their lag (0, 10, 20 or 30 days)
were posted on the bulletin board of the classifier and a measure of the difference
between the prediction produced by the classifier and the actual outcome occurrence was
used to compute the payoff.  The evaluation measure used the difference between the
number of correct and incorrect predictions to avoid the system simply predicting all
events.

The function Match is a simple comparison of the features of the classifier and the
message.  Match was initially defined simply as

Match = 40 - ∑
i

 |Classifieri - Messagei| 

with the summation over the features using the numerical values

‘0’ = 0      ‘*’ = 1       ‘1’ = 2
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A perfect fit would have a value of 40; a perfect mismatch would have a value of 0,
and a match against a classifier consisting solely of * would have a value of 20.21

A prediction is identified by the code ‘1111’ in the final four bits of the message.
The Payoff function compares the output predicted in the message to the observed
outcome: this function is similar to the Match function except that it can take negative
values:

 Payoff = 20 - ∑
i

 |Outcomei - Messagei| 

If the prediction is particularly inaccurate, the payoff will be negative and decrease
the strength of the rule that posted it.  This punishes rules for posting incorrect
predictions.

 To allow for the possibility of the system recognizing that it has not seen a
situation before and responding by not making a prediction, there is a minimum threshold
for acceptable bids.  If no rule can make a bid above the threshold, then the system
creates a new rule by randomly choosing one of the messages on the board (i.e. one of the
actual antecedent archives), mutating this with a few pass-through characters, then taking
the actual outcome as a result.  This rule then replaces the weakest rule in the classifier.
Thus if the classifier encounters behavior which it has not seen before, it should
incorporate that new behavior into its rule base.

The genetic learning of the system follows the Holland scheme described above.
Evolution occurs at the end of each 50 or 100 experiments.  As in most Holland
classifiers, the system relies mostly on recombination rather than mutation for evolution.

Genetic Evolution Algorithm

1. Sort rules by Strength
2. Discard any rules which have no made any successful bids in
   the previous eon.
3. Discard weakest rules until only Extinct_Probability * N_Rules
   remain
4. For k:= Extinct_Probability *N_Rules +1 to N_Rules

with rule k do
1. Randomly choose two “parent” rules from the surviving

        rules, with the probability of being chosen being
        proportional to the strength of the rule.

2. Choose a random cross-over point p between 1 and
        2*N_Feature

3. Create a new rule from the first p bits of the first
        parent and the last N_Feature-p bits of the second parent.

4. Mutate each bit in the new rule with probability
        Mutation_Prob:

[0,1] mutate to *
[*] randomly mutates to 1 or 0 according to

their frequencies in the surviving rules
End_With

                                                  

21 In other experiments I replaced this metric with one that did not penalize the matching against pass-
through codes—this follows Holland more closely and slightly improves the performance of the system.
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Results
Benchmark estimators

The classifier is a stochastic process and its performance must be measured
statistically.  Random behavior enters at the selection of the initial rule set, the random
sampling of the database, and the random mutations of the rules.  In general the variation
in the performance of the system is quite bounded but unusually high and low
performance occurs occasionally even in a mature system.

A measure of prediction success, S, was computed for several estimators:

S = (correct predictions - incorrect predictions)
total predictions

 

This produces values between -1.0 (all incorrect) and 1.0 (all correct).
In order to ascertain whether the Holland classifier was doing anything other than

simply making random predictions, comparative performance measures from alternative
estimators were computed.  Let Pk=Probability of occurrence of event k (i.e. the
probability of a “1” is position k of the archive) based on the samples observed  and Ek
be the kth element of the archive, then the estimators are:

Random: Ek = 

1    with probability Pk>0.5

0       otherwise                
 

Previous: Ek = value of Ek in previous observed output archive

Best:  Ek =  

 1    if  Pk> 0.5

 0    otherwise
 

The Random estimator makes a random guess on the basis of the observed
frequency of Ek.  Previous just uses the previous observed archive to predict the next

archive; because the data are sampled randomly this is not the temporally previous
archive, but rather another archive taken randomly from the population.  As a bit of
calculus will show, Best is the estimator that maximizes the value of S based on Pk as an
estimate of the population value of Pk.

For the US/European data set, Random =.683, Previous=.661 and Best =.773, based
on 10 random sets of 100 samples.  The striking feature here is the fact that there is a
great deal of regularity in the COPDAB-based data sets, in large part based on the lack of
data density, so that even a poor estimator such as Previous manages a score around 0.66.

Overall Performance

The program has several free parameters and due to the time required to run the
program, I had the opportunity to experiment with only a few combinations.   In the
initial experiments on the parameters, the program was initially run in a non-evolutionary
mode, with an eon-length of anywhere from 120 to 200 samples.   After a variety of runs,
it became clear that the predictive success of the system stabilized after about 50 samples:
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On average the success ratio changes only about 0.005 to 0.01 from experiment 50 to
experiment 100.  Statistics were collected on the Holland success and the Best statistic at
every ten samples; the analysis reported below is done on the ratio of these two.  The
“ratio” statistic is the ratio

Rt = 
average SHolland

average SBest 
 

The Best statistic was given all of the information that the Holland classifier had, so
the prediction made on the first sample includes the 32 samples used to produce the rules
in the classifier.  The average S of the Holland classifier is based only on the experiments
that have occurred since the previous evolutionary phase, in other words, it measures the
performance of the current set of rules.

The typical performance of Rt is shown in Figure 5.2, which used the parameter

values
Mutation Probability .20 Eon_Length 50
Reward_Adjust 1.25 Match_Minimum 38
Extinct_Probability .50 N_Rules 32

Performance shows a very gradual increase in performance asymptotic to 1.0.
This compares to an asymptotic Rt ratio of 0.884 for the Random estimator and 0.855 for

the Previous estimator.
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Figure 5.2.  Performance as a Function of Number of Experiments

The random fluctuations in the performance are largely due to the irregularities in
the data set; when the classifier hits a series of atypical cases, its performance drops.
Figure 5.3 shows the mean values of Rt sampled at five 100-experiment intervals.

Comparing the mean performance during the first five-hundred and second five-hundred
experiments, one can see a consistent pattern of a slight improvement when the mutation
probability is less than 0.35.
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Figure 5.3.  Mean Performance as a Function of Mutation Probability and
Experiments

Effects of parameters

The Holland classifier has several free parameters and I did a variety of
experiments with these.  The results of these are reported in detail, albeit for a somewhat
different program, in Schrodt (1986a); those results will be briefly summarized here.

The Mutation_Probability is the probability of a spot mutation, which can occur
under two conditions.  First, mutation occurs when a rule is introduced from the data set
during rule initialization or due to the lack of a good match.  In such cases the only
mutations occurring are 0 or 1 changing to *.  Second, mutations occur in rules created
during evolution.  These mutations can involve * changing to 0 or 1 as well as 0 or 1
changing to *.

Figures 5.3 and 5.4 show the effect on performance of changing the mutation
probability in the range 0.10 to 0.45.  Figure 5.3 shows this in terms of mean
performance; Figure 5.4 provides a more fine-grained track of the performance over a
number of experiments.  In general, lower mutation rates—those in the 0.10 to 0.20
range—seem to do better than higher mutation rates; this is particularly apparent when
one looks the effects of mutation across a variety of parameter combinations not reported
here.   As would be expected, the variance of performance is also higher with the higher
mutation rates.
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Figure 5.4.  Performance as a Function of Mutation Probability

The deleterious effects of high mutation rates are important for understanding the
causes of organizational rigidity.  In general, for any environment there is an optimal rate
of experimentation (mutation) for an organization.  If experimentation exceeds this rate,
the organization is wasting efforts trying to improve its performance: most changes will
be deleterious.  As noted in Chapter 3, the longer the organization has been in a stable
environment, the greater the likelihood that it has found a position in the space of rules
that is not only locally optimal, but is also superior to any other configurations that can be
reached by incremental changes in its rules.

Such was the situation of IBM, Sears and the Polish Communist Party until the late
1980s.  However, in the 1980s, the positions of these organizations were challenged not
by slow, incremental changes in their environment—changes compatible with their low
mutation rate—but rather by challenger organizations with radically different sets of
rules: Apple, Compaq and Microsoft; Walmart; and Solidarity and Gorbachev.  These
new organizations effectively changed the overall environment, and the previously well-
established organizations found themselves trapped in the pincers of a rapidly changing
environment and a bureaucratic structure that had evolved to resist change.

The parameter Reward_Adjust is used to determine the payoff to a rule for making
a prediction.  There is no discernible relationship between this parameter and
performance: it can be set to most any reasonable value and about the same results obtain.
Even if rules, on average, lose strength on a bid the accurate rules will still lose relatively
less strength than less accurate rules, and hence remain competitive.

I allowed a rule to bid even when there was an imperfect match between the
message and rule.  This was controlled through the Match_Minimum parameter.  The
program was run with Match_Minimum set at 40, 38,36, and 34, which corresponds to
0,1,2, and 3 incorrect matches (i.e. a 0 matched against a 1 or vice-versa) respectively.
The 36 level had a very slight advantage over 38—about a 0.01 difference in mean Rt.

When the strict matching criterion 40 is used, rule replacement occurs with a high
frequency: few rules get an opportunity to build up any strength and good rules are
vulnerable to being wiped out should they lose strength in a series of atypical cases.
Conversely, loosening the match criterion to 34 allows too much flexibility and
encourages random bidding.  While I have not done sufficient experimenting to draw a
firm conclusion on this issue, slight looseness on matching (1 or 2 mismatches) seems
best.
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Finally, I experimented with resetting and not resetting the strength of each rule at
the end of each eon.  Resetting strength means that all rules start out on an equal footing
at the beginning of each eon; not resetting means that rules “inherit” their strength across
the evolutionary phase of the simulation.  There is a clear advantage to not resetting, and
the results reported here are based on runs using inherited strength.
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Figure 5.5.  Rule Age versus Strength at Eon 20

Figure 5.5 shows a scattergram of the strength of rules versus the age of rules at the
end of Eon 2022 .  Only the rules that made a successful bid are displayed; the remaining
rules had an age of 100 and the initialized strength of 128 and were wiped out in the
evolutionary phase.  Two characteristics are clear.  First, a preponderance of the rules are
old—72% of the rules displayed are 10 eons old or older.  Second, there is an apparent
negative relationship between age and strength—the eight rules aged 15 and older have a
mean strength of 183; the six rules aged 6 to 14 have a mean strength of 249.   When one
examines the characteristics of rules surviving the evolutionary process, they tend,
unsurprisingly, to approximate the Best estimator (i.e. they predict modal behavior),
though they have somewhat greater variety than in the statistical estimator.

Discussion
The Holland estimators managed to achieve virtually the same accuracy as the

statistically optimal Best estimator is impressive when one considers the following
factors.  The Holland classifier’s success is far better than what would be produced by
chance, never dropping to the level of the Random and Previous estimators and it closely
approximates the statistically optimal Best estimator despite the fact that the classifier has
no information about the nature of the optimal predictor.  I had to use calculus to figure
out Best, but the Holland system was able to do as well on its own.

At the same time, the classifier didn’t do any better than the statistical estimator,
and potentially it should be able to.  One problem in getting high average performance

                                                  

22 Eon length was 100.
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with the classifier is that inaccurate predictions are required to clear out unsuccessful
rules and these errors affect the overall performance.  An alternative approach would be
to evaluate the system by distinguishing between two types of predictions: low-match
predictions used only for learning—the system is saying “I’m going to try this out but
don’t hold it against me if I’m wrong…”—and high-match predictions where the system
is confident, based on the strength and match of the rule, that the prediction will be
accurate.  This would be similar to how human analysts operate: one learns in private and
only makes public predictions when one is confident that those predictions will be
correct.23

The modal character of the COPDAB data also made it difficult for the classifier to
improve on the modal predictor.  However, some indication of an environment where the
Holland system would show superior performance occurred in an inadvertent but
enlightening test of the system in a rapidly changing environment.  While debugging the
program, I cleverly turned off array bounds checking to save 10% on run times, and then
forgot to reinitialize a variable, resulting in two days worth of runs where the classifier
roamed through the computer’s random-access memory reading “data” until some fatality
occurred with the operating system.  In this situation, the classifier performed
considerably better than the Best estimator because, with rule-replacement, it adapted
fairly quickly to the fact that the data had changed; the Best estimator was slower to
respond.  In this artificially complex environment, Rt values of 2.0 and greater were not

uncommon.  In a denser, more varied international events data set than these COPDAB
dyads, the Holland classifier would probably be superior to a statistical estimator.

Neural Networks24

Neural networks have attracted a great deal of attention in the past five years as a
solution to complex classification problems with ambiguous and noisy inputs.25  The
term “neural network” applies to any algorithm using a data structure composed of
“weights” and “neurons”.  Computationally, “weights” are real numbers (either positive
or negative), and neurons are functions.  The value of a neuron—its “state” or
“output”—is determined by the weighted sum of the values of the neurons to which it is
connected.  If Ni is connected to a set of neurons Nj, jεJ, through a set of weights wji then
the state of Ni is determined by

                                                  

23 Or when one is a well-paid media pundit whose future employment is unrelated to the accuracy of the
predictions.

24 Much of this material originally appeared in Schrodt (1991d).

25 Hecht-Nielsen (1990), Wasserman (1989), Caudill (1989), Freeman and Skapura (1991), Schalkoff
(1992), Michie, Spiegelhalter and Taylor (1994) and Hertz, Krough and Palmer (1990) provide
introductions to this method at various levels of formality; Rumelhart et al (1986) present a detailed
discussion of various techniques along with considerable detail on the physiology of biological nervous
systems.  Garson (1991) and Kimber (1991) provide two additional applications of neural networks in the
social sciences.  A great deal of commercial (and shareware) software is now available for implementing
neural networks, so this is one method where it is probably not worthwhile to write your own code,
particularly if you have access to a package that allows experimenting with a variety of network
configurations and training methods.
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Ni = F(∑
j

 Njwji ) (5.1)

where F is some function, usually nonlinear and monotonic.
This mathematical structure is a simple approximation to the mechanism through

which biological neurons—the basic cells of the brain and the nervous system—operate.
Biological neurons are interconnected by long branching dendrites; the activity of one
neuron may either excite another neuron or inhibit it.  In a neural network, excitatory
connections correspond to positive weights; inhibitory connections to negative weights.
While mental activity is more complex than the simple activity or inactivity of
neurons—for example it is mediated by a vast array of neurochemicals that influence the
transmission of signals—the process of neural stimulation and inhibition is clearly an
important aspect of the brain physiology.

Figure 5.6 shows a schematic of a typical neural network.  The network has
multiple “layers” of neurons.  The input layer is activated by the values of the
independent variables of the problem to be solved.  The input layer values in turn activate
the hidden layer according to equation 5.1, and the hidden layer activates the output
layer.  For example, a neural network designed to identify letters of the alphabet might
contain an input layer determined by a grid of nine boxes placed over the letter.  Each
box would control four input neurons—giving a total of 36 neurons in the input
layer—that would be activated if the box contained a horizontal, vertical, right diagonal
or left diagonal line, as illustrated in Figure 5.7.  The output layer would consist of 26
neurons, each corresponding to a letter of the alphabet.

   

Figure 5.6.  Neural Network Schematic

In the example in Figure 5.7, the inputs are binary.  This configuration is useful
when dealing with nominal or categorical data, since their values can always be
expressed as a binary string.  If the network is working with interval-level measures—for
example economic data or a physical process such as a control of a pipeline—neurons
could be set to real numbers and Equation 5.1 applied, or the binary and real-valued
inputs could be mixed in the same network.
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Input Vector:    1    2   3   4   5   6   7   8   9
0000 0011 0000 0010 1011 0010 0010 0000 0001

Figure 5.7.  Input Coding for a Neural Network

The values of all of the neurons except those in the input layer are determined by
summing weights and neuron values according to Equation 5.1.  This is called a “forward
propagation” process: the values of each layer of neurons are determined by the values of
the neurons below them and the intervening weights.  The performance of the network is
determined entirely by the values of the weights, so the weights are the knowledge
representation structure of the neural network.  In the letter-recognition problem
discussed above, the weights would need to be set so that when the input layer was set to
a vector describing the letter “A”, only the A neuron in the output layer would be
activated; when set to a vector corresponding to a “B” only the B neuron would be
activated and so forth.

Because a neural network contains a large number of weights, their values cannot
be determined analytically except in the most trivial problems.  Instead, the weights in a
network are randomly initialized and the neural network is trained by examples.  Cases
are presented for which the desired state of the output layer is known, and the difference
between the actual state of the output layer and the desired state is used to adjust the
weights.  The presentation of training cases and weight adjustment continues until the
weights in the network stabilize.

Research on neural networks dates back to Hebb (1949) who proposed the simple
learning rule for adjusting weights that forms the basis of many algorithms still in use.
As the basic physiology of neurons became better understood and with the advent of
digital computers, the prospect of simulating realistic neural activity using computer-
implemented mathematical models was explored.  This led to a flurry of research in the
1960s on “perceptrons” (Rosenblatt 1962) that had an input layer connected directly to an
output layer—without the hidden layer common in contemporary neural network
research—and the linear activation function

Nj = 


 1   if ∑

i

 wjiNi > t

 0   otherwise          
 

While simple by contemporary standards, perceptrons had many of the
characteristics of neural networks, including parallels with biological neural behavior,
training by example and some aspects of associative memory and error correction.
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Perceptron research was brought to an abrupt halt in the late 1960s by an important
but thoroughly misinterpreted analysis by Minsky and Papert (1969), which proved
mathematically that a perceptron could not solve a very basic class of discrimination
problems, the exclusive-OR (XOR) problem.  Since XOR is a fundamental logical
operation that could be expected to be part of any serious classification problem, this was
quite a damning limitation of the perceptron concept.

Minsky and Papert’s paper marked the virtual end of neural network research for
about a decade and a half.  Unfortunately, the computer science community did not
properly understand the limitations of Minsky and Papert’s work—a mathematical
proof—.  Minsky and Papert had shown that a perceptron—a neural network with single
layer of weights and a linear threshold response function—was unable to solve the XOR
problem.  Their proof said nothing about whether multiple-layer networks could solve the
XOR problem, nor did it deal with non-linear response functions.  While Minsky and
Papert made no mathematical claims beyond the analysis of perceptrons, their work was
popularly interpreted as applying to neural networks generally.

Despite the demise of the perceptron, some research continued on more general
neural networks, most notably by the Carnegie “Parallel Distributed Processes” group
(Rumelhart et al, 1986).  From a mathematical analysis, these researchers knew that
multi-layer, nonlinear networks could solve the XOR problem (see Wasserman 1989,
chapter 2); the problem was finding an appropriate training algorithm for such networks.
The breakthrough came with the “backpropagation” algorithm developed by PDP
research group.26  The backpropagation method has now been used in a variety of
successful applications of neural networks to real-world problems (see Caudill 1990) and
has formed the basis of a great deal of experimentation with various neural network
configurations and training techniques since the mid-1980s.  A wide variety of training
techniques are now available in addition to backpropagation; to date none of these have
provided dramatic breakthroughs in accuracy or training efficiency, though they may be
preferable to backpropagation in some problems.

The current research on neural networks uses two modifications of the perceptron.
First, one or more hidden layers are used between the input and output instead of the
direct connections of the perceptron.  Second, a nonlinear response function is used,
typically the “sigmoid function”

s = 
1

(1 + e-r)
 where r =  ∑

i

 Niwji 

This function is the familiar “S-shaped” curve used in statistical logit analysis.
While the sigmoid function has some desirable mathematical attributes, the exact form of
the response function is not critical and a variety of other bounded, nonlinear monotonic
functions have also been used.  The key to the sigmoid response is that it compresses

high values of ∑
i

 

 Niwji  to the limited range [0,1] and therefore no single value in the

input layer can propagate through the hidden layer to dominate the response of the output

                                                  

26 As Wasserman (1989,43) notes, the backpropagation training method had actually been anticipated in
articles published in 1982 and 1974, but none of these earlier results were noticed at the time.
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layer.  This ability to filter the effects of outlying input values contrasts with linear
models, though it is also found in nonlinear statistical methods such as logit analysis.

While neural networks were initially attractive as a simulation of a biological
information processing, the method has proven to have a number of more general
advantages.  First, neural networks provide a form of knowledge representation distinct
from either the if...then logic of rule-based systems or the linear models of statistical
studies.  Second, because the information processing of the network is diffused among
hundreds or thousands of weights, neural networks tend to be robust against noise.  A
single input value rarely determines the behavior of the network, so missing values or
erroneous values are less likely to result in incorrect classifications.  Finally, in common
with ID3 and genetic algorithms, neural networks are trained by example, so they may be
able to solve problems that human experts have not solved.

Neural Networks as an Organizational Metaphor
Neural networks may provide a useful structure for predicting human political

behavior due to their parallels to organizational structure rather than because of
analogies with human brain.27  A hierarchical organizational structure would be capable
of decision-making and some associative recall despite noise and the failure of some of
its component parts.  Such a structure also emphasizes the perceptual role of the
individual while minimizing the information that must be transmitted between
individuals.

A foreign policy organization, interpreted as a neural network, would be seen as
having the following components: The input layer consists of various intelligence
gathering offices that are monitoring specific types of behavior.  These offices report to a
“middle management” that integrates the various reports, weighing the reported
information positively, negatively or ignoring it altogether.  Each of these middle level
offices has access to all of the collected information, but they use it differently.  For
example an office interested in recommending military activity in a conflict might
positively weight information on power disparities, negatively weight the presence of
ethnic conflict, and ignore information on mediating agent biases.  These middle-level
offices then make positive or negative recommendations to the highest, policy-making
level, which integrates all of their recommendations into a final decision.  The “output
layer” is probably not a set of individuals so much as a small set of standard operating
procedures from which the penultimate layer of managers chooses—for example the
{negotiate, invade, bomb, blockade, do nothing} options of the Cuban Missile Crisis.

Based on what is now known about the properties of neural networks, this approach
provides at least three advantages in decision-making; these might also be instructive in
explaining the ubiquitous nature of hierarchical organizations.  First, in contrast to a rule-
based system, a network has some associative recall, error correction, insensitivity to
missing information, and resistance to systemic failure due to the failure of individual
components.  Because organizational components do fail randomly—inexperienced or
incompetent personnel dispersed throughout the organization as well as the effect of
retirements, illness and other distractions—insensitivity to component failure is

                                                  

27 See discussion in Chapter 7.
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particularly important. Those capabilities derive from the networked structure of the
organization, not from the cognitive capabilities of its individual members.  We expect
error correction and robustness in organizational decision-making because we experience
those features in individual cognition, but a purely rule-based organization would not
exhibit them.  Furthermore, as Minsky and Papert pointed out, a simple two-layer
network, devoid of the much-maligned “middle management”, cannot solve many simple
problems.

Second, a network structure is an effective means of dealing with organization
bandwidth limitations.  Individuals at the input level act as feature detectors: In deciding
whether to raise concerns about an issue, they can use their high bandwidth associative
and subcognitive capabilities to infer complex motives, draw historical analogies, and
deal with multiple counterfactuals and contingencies.

Individuals in the middle and output layers must weigh the information coming in
from the levels below them and continually adjust those weights, but these are memory-
intensive processes.28  In contrast, the information that must be transmitted through the
limited organizational bandwidth is simple: one needs only to know whether individuals
are sending “on” or “off” signals, and the only decision one must transmit is one’s own
resulting state.  Information processing tasks requiring high bandwidth are placed in
individuals, not in the links between them.

In human organizations, the information transmitted in memos is frequently more
complicated than a yes/no decision, but the neural network model indicates that the
transmission bandwidth could actually be as narrow as a single bit without impeding
robust decision-making.  Analyses, position papers and policy recommendations tend to
be simplified notoriously as they are passed up a hierarchy, a behavior consistent with
each decision-making level being primarily concerned with the simple issue of approval
or disapproval.  Many of the queries in the final processing of a complex decision are
simply, “Has Smith signed off on this?”  If the answer is affirmative, the discussion
proceeds; the top layer does not care why Smith signed off, and Smith may have signed
off for entirely inappropriate reasons.  Only if something goes wrong are the rules
governing Smith’s lower-level behaviors explored and possibly modified; this process is
comparable to backpropagation in a formal network.

The neural network is only an analogy: middle and upper managers clearly do more
than sum the recommendations of lower level offices and feed those into a non-linear
function, just as the human brain contains components other than neurons and synapses.
But the neural and organizational networks are structurally similar and one can certainly
argue that the organizational structures of foreign policy decision-making resemble
neural networks more than they resemble regression or expected utility equations.

                                                  

28 I am not suggesting that a manager literally does the mathematical calculations of a network, only that a
manager learns who to ignore and who to pay attention to on various problems.  Some of these weights are
formally embedded in organization procedures, such as the formal organization chart and rules dealing with
who must "sign off" on a decision.  Other weights develop informally; for example most organizations are
very efficient at bypassing individuals who are temporarily incapacitated by illness, and are often almost
equally efficient at permanently bypassing individuals whose judgment is distrusted.  Because humans have
much higher information processing capabilities than neurons have, an individual will typically serve as
both an integrator and a feature detector.  Good desk officers read newspapers as well as their cable traffic.
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Application
The Butterworth data set used in the experiments with ID3 was analyzed using a

neural network; as with ID3 the tests were done using split-sample training.  As would be
expected for a neural network of the size required to study the Butterworth data, the
program is relatively slow: Experiments with ten split-samples and forty training cycles
for the interval-level model required about 24-hours to run on an 8Mhz Macintosh SE.
While this processing speed would be increased using a faster machine, the training of
neural networks is a notoriously slow process in general.

Neural Network Configurations

Two different configurations of the neural network were studied.  In the interval
configuration, each independent variable was treated as an integer, with the input neuron
set to that value.  These values are multiplied by the network weights as they propagate
forward to the hidden layer, with the sigmoid function forcing the neuron values to
remain in the range [0,1].  There were 24 input neurons corresponding to the 24
independent variables.  Experiments were done with hidden layers of 6, 9, 12, 24 and 48
neurons; the output layer had 3 neurons corresponding to the three possible values of the
dependent variable.

In the binary configuration, a separate input neuron was used for each possible
value of each independent variable.  For example, the “Duration” variable can take the
values 1,2,3 and 4, and therefore has four input neurons assigned to it: the neuron
corresponding to a value of “Duration” in the case being evaluated was set to 1; the
remaining neurons for that variable were set to 0.  This configuration produces an input
layer with 107 neurons; given the disparity between size of the input layer and 3-neuron
output layer, the hidden layer was set somewhat arbitrarily at 30 neurons.  With a total of
3300 weights, these networks were exceedingly slow to train and I did only limited
experimentation with them.

Alternative Predictive Techniques
The critical issue concerning the utility of the neural network is whether it is an

improvement over existing techniques.  The performance of the neural network was
compared to the results of the ID3 analysis discussed earlier, and three other methods:

Mode

As noted earlier, the Butterworth data are heavily modal so the mode provides a
good “null model” for assessing accuracy.

Discriminant Analysis

The linear model appropriate for a nominal dependent variable and ordinal
independent variables treated as if they were interval is discriminant analysis (Klecka
1980).  Accordingly, five discriminant analyses were run using the same split-sample
protocol used for the neural networks and ID3.  In each case, the Butterworth cases were
randomly divided into subsamples using a random number generator, a set of
discriminant functions was estimated on half of the set, the other half of the cases were
classified using the Fisher discriminant functions, and the accuracy of the resulting
classification was tabulated.  SYSTAT 5.0 was used for the discriminant analysis.
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Logit

The most commonly used nonlinear maximum likelihood statistical technique used
for nominal dependent variables is multinomial logit (see Aldrich and Nelson 1984).  The
same split-sample samples described above for discriminant were analyzed using logit,
again treating the ordinal variables as if they were interval.  SST was used to generate the
logit coefficients; computing the logistic probability functions in a separate program
generated the predictions in the validation set.

Because logit is a nonlinear method, the number of independent variables that SST
was able to handle was restricted to 13 or fewer.  These were chosen from the variables
determined to be most important by the discriminant and neural network analyses.29

Results
Accuracy in Split-Sample Testing

The same measures used in the study of ID3—accuracy and the entropy ratio—
were used in this study.  Table 5.5 and Figure 5.8 report the overall results of the
experiments.  Table 5.5 reports the average value of the accuracy and ER statistics30

across 10 experiments in the neural networks, 5 experiments in the discriminant and logit
analyses and 200 experiments in ID3; Figure 5.8 shows the results on the validation set
graphically.

In the validation tests of the model—classifying the cases not originally used to
estimate the model—the neural network is consistently more accurate than the ID3
model; it is roughly equal to the discriminant analysis on two of the five variables and
substantially more accurate on the remaining three; and it has about the same accuracy as
the logit model.  The differences between the accuracy of the neural network and
discriminant are statistically significant at the 0.01 level in a t-test for the Stop, Isolate
and Settle variables.  Information was not available to do a t-test comparing the neural
network and ID3 but the network has a consistent advantage over ID3 of about 4% on all
of the dependent variables.

As Figure 5.9 demonstrates, the neural network provides superior predictions only
in the split-sample tests: if the training cases alone are tested, the discriminant and logit
analysis appear to have a decided advantage.31  Discriminant, however, tends to over-fit
the training set, and consequently has less accuracy on the validation set; the neural
network, while less accurate in the initial fit, is more robust than discriminant when
dealing with new cases.  None of the analytical techniques are more accurate than simply
                                                  

29 See Table 4 in Schrodt (1990b): the variables were number of agents, likelihood of abatement,
likelihood of spread, strongest antagonist, duration, degree of spread, ethnic conflict, system period, agent's
bias, agent's autonomy, level of agreement, action and relative power.  In 6 of the 25 variable/sample
combinations two additional variables had to be deleted: likelihood of abatement and strongest antagonist.
Anthony Nownes did the logit analysis.

30 The standard deviations vary with the dependent variables and techniques but are generally in the 0.03
to 0.06 range.  Due to a programming error, the ER measure is not available for the binary neural network
experiments but it is probably similar to the ER for the interval network; ER was also not computed for the
training sets of the logit model.

31 ID3 will fit almost any training set with close to 100% accuracy so it is not included in the comparison.
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predicting the mode.  Since the neural network is biased towards correctly predicting the
modal case, this might account for some of its greater accuracy for this data set, as might
the fact that neural networks—and logit—have a nonlinear response to the input and are
therefore less sensitive to outliers.

Table 5.5.  Measures of Fit with Overtraining

Dependent Variable
Statistic                                                                   Stop      Abate      Isolate     Restrain      Settle

Accuracy
Interval NN training .647 .703 .839 .711 .752
Discriminant training .918 .760 .931 .767 .779
Overtrained NN training .805 .769 .859 .806 .836
Interval NN validation .609 .536 .694 .523 .640
Discriminant validation .469 .543 .547 .523 .549
Overtrained NN validation .552 .479 .648 .497 .598

Entropy Ratio
Interval NN training .371 .589 .527 .597 .464
Discriminant training .921 .766 .937 .766 .792
Overtrained NN training .756 .736 .739 .812 .772

Interval NN validation .320 .403 .374 .373 .302
Discriminant validation .364 .499 .469 .490 .487
Overtrained NN validation .387 .394 .394 .443 .366
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Figure 5.8.  Accuracy by Method in Validation Sets
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Figure 5.9.  Accuracy by Method in Training Sets

The dependence of the neural network on modal predictions can be seen by looking
at the entropy ratio (ER) measures.  As Figure 5.10 shows, the discriminant and logit
analyses do substantially better than the neural network or ID3 on this measure, and the
neural network performance also tends to be slightly worse than ID3.  The neural
network only marginally improves on the predictive abilities of the mode, particularly on
the Stop  variable (where it is actually worse than the mode) and on Restrain.
Interestingly, the neural network also does poorly on the ER measure even in the training
sets: it never exceeds an ER of about 0.60, whereas discriminant and logit are in the 0.75
to 0.95 range during training.  As noted below, these figures might be improved by very
long training times for the neural network.

These results are generally consistent with those of Garson (1991), who also
compared neural networks with ID3, discriminant, logit and regression, using a variety of
simulated data sets.  Garson found that in the simpler of his simulated data sets, neural
networks provided only a modest improvement—around 5% to 10%—in the number of
correct predictions, but on more complex and noisy data, neural networks had
substantially higher accuracy, with an improvement of 25% in one set and 50% in
another.  Garson’s study also found a version of ID3 that works on interval-level data to
have a small but consistent advantage over regression, discriminate and logit.  The data
used in the Garson study, unlike those found in Butterworth, are not highly modal, and
his results may be more indicative of the likely effectiveness of neural networks on
typical social science data.



Machine Learning 159

Stop Abate Isolate Restrain Settle
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Mode
ID3
Neural
Discrim
Logit

Dependent Variable

E
R

Figure 5.10.  ER by Method in Validation Sets

Alternative Neural Network Configurations

I did experiments with several different configurations of the neural network.
Three variations will be discussed here: modifying the size of the hidden layer; using
binary coding rather than interval coding of the dependent variable; and “overtraining”
for the less frequent values of the dependent variable.

Hidden layer sizes of 6, 9, 12, 24 and 48 were tested but the size of the hidden layer
makes no consistent difference in accuracy or in the rate of learning.  On the Isolate
variable the accuracy actually dropped off slightly as the size of the hidden layer
increased, but this did not hold for the other variables.  Since the training time of the
network is proportional to the size of the hidden layer, most work was done using a
hidden layer of 12 neurons.

As noted earlier, the use of the ordinal independent variables as interval inputs to
the input layer is metrically dubious, though no worse than comparable infractions
chronic in applications of regression analysis.  Binary coding treats these variables in a
strictly nominal fashion.  This provides additional information by eliminating the
artificial magnitudes of the ordinal codes, but does so at the substantial computational
cost of an input layer containing 107 neurons.

Figure 5.11 shows the performance differences between the binary and interval
configurations: these are minimal.  Unsurprisingly, the binary configuration does
consistently, though not dramatically, better than the interval configuration on the
training set.  The two configurations are indistinguishable on the validation sets: the
binary configuration does slightly better on three of the five variables but these
differences would clearly not be significant in a t-test.  In view of the substantially faster
training rate for the interval configuration, it was used in the remaining experiments.

Figure 5.11
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Figure 5.11.  Comparison of Interval and Binary Configurations

My final experiment dealt with “overtraining”.  Because the Butterworth data set is
heavily modal, the weights are seldom modified to account for less frequent values of the
dependent variable and this results in a system biased towards predicting the modal value.
This can be offset by “overtraining” the system on the less frequent values, so that the
system is exposed to roughly equal numbers of cases having each value of the dependent
variable.  This equal distribution was approximated by running one training cycle when
the dependent variables was equal is “0”, two cycles when it was “1”, and three when it
was “2”.

This approach has mixed results, as indicated in Table 5.6, which also shows the
measures on the conventionally-trained network and discriminant analysis for purposes of
comparison.  As expected, the overtraining substantially improves the accuracy in the
training set: on the Abate, Restrain and Settle variables, the over-trained network does as
well or better than discriminant analysis on both the accuracy and ER measures.  The
improvement over the conventional network training is quite dramatic on the ER
measure—for example it is almost twice as high for Stop—and performance is
consistently higher on the accuracy measure for all variables.

Table 5.6.  Measures of Fit with Overtraining

Dependent Variable
Statistic                                       Stop      Abate    Isolate     Restrain   Settle

Accuracy                                  
Interval NN training .647 .703 .839 .711 .752
Discriminant training .918 .760 .931 .767 .779
Overtrained NN training .805 .769 .859 .806 .836
Interval NN validation .609 .536 .694 .523 .640
Discriminant validation .469 .543 .547 .523 .549
Overtrained NN validation .552 .479 .648 .497 .598

Entropy Ratio                          
Interval NN training .371 .589 .527 .597 .464
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Discriminant training .921 .766 .937 .766 .792
Overtrained NN training .756 .736 .739 .812 .772
Interval NN validation .320 .403 .374 .373 .302
Discriminant validation .364 .499 .469 .490 .487
Overtrained NN validation .387 .394 .394 .443 .366

The consistently increased accuracy and ER on the training set does not extend to
the validation set: the over-trained network has slightly higher ER measures than the
conventionally trained network—except for the Abate variable, where the measures are
about equal—but it is consistently worse in terms of accuracy.  The over-trained network
is also substantially weaker than discriminant analysis on four out of five of the
dependent variables as measured by ER, and worse than discriminant on two out of five
variables on accuracy.  The overtraining is a two-edged sword: the improvements on the
training set do not consistently translate into comparable improvements in the validation
set, probably due in part to the over-trained network being less reliant on modal
predictions.

Training Patterns

Figures 5.12 and 5.13 show the general pattern of training as a function of training
cycles.  Figure 5.N7 exhibits a classical learning curve32: the only point of interest is that
even after 40 training cycles the learning curve has not entirely leveled off, so it might be
possible to improve the performance somewhat by substantially longer training times.
While neural networks can exhibit an assortment of learning pathologies—notably
getting stuck in weight configurations that are local maxima but provide low
accuracy—these problems were not encountered in the Butterworth set, and
improvements in the performance of the network almost always followed a classical
learning curve.
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Figures 5.12 and 5.13.  Accuracy by Training Cycles
                                                  

32 These figures give the accuracy on the training set at the end of each cycle of training on all cases.  The
accuracy at cycle 1 is considerably better than chance because weights have been modified after examining
each case and the network adjusts to the modal cases even before the first training cycle is completed.

The "Right minus Wrong" statistic is the number of correct output layer values minus the incorrect values;
this increases monotonically during the training.  "All Correct"  is number of cases where all three output
neurons had the correct value: 1 for the neuron corresponding to the observed value of the dependent
variable and 0 for the other two neurons.
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The pattern of learning illustrated in Figure 5.13 is interesting.  The system first
learns the modal value (“0”), rapidly reaching an asymptotic accuracy.  It then begins to
learn the second most frequent value (“1”), and as the accuracy of that increases, it very
gradually picks up the least frequent value.  This is generally characteristic of neural
networks—as well as human beings—and would argue against using a neural network to
predict unusual cases of political behavior.

Weights and the Significance of Independent Variables

The fact that a neural network stores its knowledge in a diffuse set of weights
makes it robust against erroneous input and component failures, but poses problems when
one is trying to ascertain the variables most important in determining the behavior of the
network.  One plausible, if imprecise, measure of variable importance are the weights
themselves: ceteris paribus, weights that have a large absolute magnitude should have
greater influence on the output of the network than the weights with a small magnitude.

The key variables of the Butterworth data set for the neural network were identified
by examining the combined weights linking input and output neurons for each of the five
dependent variables.  The total weight is computed as

wi,o = wi,h + wh,o

In other words, the sum of the input to hidden layer weight and the hidden to output layer
weight.  This is an imperfect measure since a high positive weight in one layer could be
canceled out by a high negative weight in the other, and the effect of any input to a
neuron is moderated by the sigmoid function, but it is a reasonable first approximation.

The choice of heavily-weighted inputs was clearly non-random.33  Certain
variables—for example Action , Agent’s Bias, Ethnic Conflict and Relat ive
Power—showed up quite frequently across the different dependent variables.  Many of
these high weights were concentrated on a single neuron in the hidden layer.

Table 5.7 is a comparison of the list of input variables corresponding to the highest
ranked weights in the neural network compared to the sets of important variables
identified by the discriminant analysis and bootstrapped ID3 models.  The variables from
the discriminant analysis were those significant at the 0.10 level or higher for each of the
dependent variables.  The ID3 comparison uses the five variables most frequently used in
the bootstrap experiments.

There is a fair amount of commonalty between the important variables identified in
the discriminant analysis and neural networks: the percentage of the high weight
variables that also have significant discriminant coefficients is consistently about twice
the percentage of variables with significant discriminant coefficients as a percentage of
the number of independent variables.  In other words, the variables with high neural
network weights are about twice as likely to be from the list of variables with significant
discriminant coefficients than one would expect by chance.  The discriminant

                                                  

33 Table 4 in Schrodt (1990b) identifies these variables by name.  Because the logit analysis used a
restricted set of variables determined by the neural network and discriminant results, that technique is not
included in this comparison.
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Table 5.7.  Proportion of High Weight Variables in Common with Significant
Independent Variables using Other Techniques

Dependent Variable
Statistic                                      Stop      Abate    Isolate    Restrain      Settle
Signif Discriminant
   Coefficients .533 .666 .733 .733 .333
Signif Discriminant Coeffs.
  as a Proportion of
  Independent Variables .250 .333 .417 .333 .450

B/ID3 Variables .200 .267 .466 .266 .250
B/ID3 Variables without
  “Action” .000 .000 .266 .066 .200
B/ID3 Variables as a Proportion
  of Independent Variables .208 .208 .208 .208 .208

Discriminant analysis and neural network appear to be using much the same
information from the independent variables, particularly when one considers the
imprecise character of the summed weights as a measure of the importance of the
variable.

This commonalty does not hold true for the ID3 variables.  Except for the Isolate
variable, the level of agreement is only slightly higher than one would expect by chance.
Even that level of agreement is due almost entirely to a single variable—Action—and
when it is removed, there is almost no agreement for three of the five dependent
variables, and agreement at only about the level of chance for the remaining two.  ID3 is
using different information, which is probably unsurprising given the totally different
structure of a ID3 classification tree compared to the neural network.

Discussion
Over the past decade neural networks have moved from the periphery of machine

learning methods to the mainstream.  In 1985, neural networks were too-frequently
dismissed with a brief “Minsky and Papert proved they don’t work.”  In 1995, the
symbolic methods advocated by Minsky are in eclipse, and neural networks are an option
in SPSS.  A large amount of research is now being done with neural networks—alone or
in combination with other methods such as genetic algorithms or clustering
techniques—and the application I have presented here is quite basic in its structure and
objectives compared to what could be done with contemporary software.

The neural network demonstrated here was a classifier trained in a “supervised”
mode.  Neural networks can also be trained in an “unsupervised” mode where the
network itself decides what categories are present in the data: for example the SPSS
neural network package offers two different methods for doing this.  Such clustering
could be used, for example, on a set of event sequences to find common patterns—much
as I will do in the next chapter using other algorithms—and the neural network would
provide the advantage of some associative and error-correction capabilities.

When used to model a set of international political behaviors, a neural network is
significantly more accurate than a discriminant model, slightly more accurate than an ID3
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model, and comparable to a multinomial logit when studied in split-sample tests.
Obviously this does not mean that a neural network will always work better than linear or
ID3 models—in particular the heavily modal character of the Butterworth data plays to a
strength of neural networks—but neural networks are certainly a contender.  Based on the
commonalty of variables, I would guess that the neural network, logit and discriminant
analysis probably make similar classification errors; ID3 probably makes quite different
ones.

Clustering and nearest neighbor methods
A fourth method of machine learning is clustering or nearest neighbor evaluation.

To classify using clusters, one takes a large number of cases, places them in a very high
dimensional space on the basis of their feature vectors, and then classifies new cases by
associating a case with the cluster to which it is closest according to some metric.
Discriminant analysis is one such method in common use in political science, but a
variety of other clustering methods can also be used.34

The clustering and nearest neighbor methods used in machine learning typically use
a far greater number of features than comparable approaches in statistical analysis; for
example, in a text retrieval system, hundreds or even thousands of features might be used.
This dimensionality restricts the techniques that can be employed to create the clusters:
Matrix inversion is usually not an option when 2000 variables are under consideration,
and iterative methods are used instead.  The high number of dimensions also means that a
large number of cases are needed to define the clusters, though unlike regression-based
approaches, the number of cases need not be larger than the number of variables.

The full dimensionality of the data is usually considered only in the machine
representation of the problem.  Due to the inability of humans to perceive more than a
few dimensions in data, nearest neighbor systems are often presented as if they involved
only a small number of dimensions.35  This simplification is augmented by the frequent
empirical tendency for most of the classification power in a large set of features to be
found in two or three appropriately-chosen dimensions.

The efficiency of any nearest neighbor method depends heavily on the metric used
to determine the distance between cases.  It is unusual to find that all of the features are
equally important, so an effective classification metric will emphasize some features
more than others.  For example, discriminant analysis is based a least-squares distance
between cases, and “learning” in discriminant analysis involves weighting the features
(independent variables) describing a case to maximize the difference between cases in
different categories.

                                                  

34 Aldenderfer and Blashfield 1984; Bailey 1995; Everitt 1980; Michie, Spiegelharter and Taylor 1994 and
Fayyad et al 1995 review a variety of clustering methods. Schalkoff (1992,chapters 2-5) is a good technical
introduction to the statistical pattern recognition literature and Salton (1989,chapter 10) describes a variety
of nearest neighbor methods in the context of automated document retrieval.

35 In addition to the three spatial dimensions, additional nominal and ordinal dimensions can be displayed
using the color, shape and labels of data points; the color and size of points can also express a limited range
of interval values.  It is difficult to push even these methods beyond about a half-dozen dimensions,
however.
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Finding a metric is more complicated when nominal features—for example type of
government, dominant religion, and membership in specific alliances—are considered.
Frequently the features describing a case involve nominal, ordinal and interval variables,
so the distance metric must be able to deal with all of these levels of measurement.  When
a classification problem involves hundreds of features and thousands of cases,
computational efficiency also becomes an issue.  As a consequence a wide variety of
metrics, sometimes customized for specific problem domains, are used in nearest
neighbor systems—for example the SPSS hierarchical clustering routine offers almost
two-dozen options—although simplifications such as treating nominal and ordinal
variables as if they were interval are often disgustingly effective.36

While there is often a great deal of overlap between the mathematical techniques
used in inferential statistics and those used in nearest neighbor systems, the two
approaches are almost opposite in their philosophy.  Inferential statistics use a small
sample of cases to construct a general model of the population from which those cases
were drawn.  Clustering, in contrast, employs a large number of training cases to classify
a small number of new cases.  Nearest neighbor systems are generally descriptive rather
than confirmatory—there is no null hypothesis and no significance test.

Properties of Nearest Neighbor Methods
An attractive aspect of nearest neighbor techniques is their conceptual simplicity.

Devijver and Kittler (1982,69) note “Roughly speaking, nearest neighbor methods
exchange the need to know the underlying distribution for that of knowing a large
number of correctly classified patterns.”37  The “training” of a nearest neighbor system
consists simply of placing a large number of cases in the multi-dimensional space.  New
cases are classified by determining their distance to these points according to some
metric.  The metric can either be decided a priori or, more commonly, it is chosen to
optimize some characteristic of the space, such as minimizing the distance between cases
known to be in the same category.

For example, one could classify a country as friendly or hostile by looking at its
political interactions in a high-dimensional space such as that defined by the WEIS or
COPDAB event coding schemes.  New clusters of interactions over time would reflect
changes in the relations between two states.  In 1979, the United States found that the
behaviors of the Islamic Republic of Iran were located in quite a different part of the
space of diplomatic behaviors than those Iran had shown during the Pahlavi regime.  The
United States rapidly learned to anticipate conflictual rather than cooperative behaviors
from Iran.  Egypt’s actions following the assassination of Anwar Sadat in 1981, in
contrast, were generally located in the same regions of the behavioral space as they had
been prior to the assassination.
                                                  

36 This is similar to the situation of using binary dependent variables in regression: while there are lots of
theoretical reasons why logit, probit or discriminant analysis should work better than OLS, regression tends
to do quite well in actual problems.

37 Clusters are particularly useful when the phenomenon being studied derives from an evolutionary
mechanism where new cases are adapted from old cases (Aldenderfer and Blashfield 1984).  For this
reason, two of the most fruitful sources of nearest neighbor techniques are biology—e.g. genetics;
paleontology—and linguistics.
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Petrak, Trappl and Fürnkranz (1994) use clustering to construct a very effective
system for identifying sets of similar crises coded in the KOSIMO database.  One of the
interesting characteristics of this system was that crises tended to cluster
geographically—European crises tended to be associated with other European crises,
Asian with Asian, African with African and so forth—despite the fact that “region” was
only one of about a dozen features used for the classification.  The regional clustering
occurred because multiple characteristics of the crises—for example superpower
involvement and level of economic development—were coassociated with geographical
location, and this was reflected in the clustering in the vector space.

If the population of cases being analyzed is changing, the metric used to classify
them may need to be modified periodically, particularly when the existing model is
producing a number of erroneous or ambiguous classifications.  This new metric may in
turn establish new clusters.  The revised metric constitutes a “re-evaluation of policy”
that can change not only the evaluation of future interactions, but also a reassessment of
past interactions.  The US re-evaluation of Japan as an economic rival rather than a client
provides an example of this: Some past Japanese actions that had earlier been interpreted
as supportive of US policy—for example Japanese encouragement of market systems in
southeast Asia and Africa—were re-interpreted as evidence of Japanese competitiveness.

Nearest neighbor methods also allow for the assessment of certainty, just as
humans often assess the confidence with which they know something.  A new case being
classified can fall into any of the four situations illustrated in Figure 5.14.
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Figure 5.14.  Nearest Neighbor ConfigurationsCluster A: The case is near a
large cluster of cases of a single type.

Interpretation: Classify the case using the type found in this cluster.  The classification
can be done with a high degree of confidence.

Cluster B&C: The case is near a cluster containing cases of multiple types.
Interpretation: The case is ambiguous and might be either type B or C.  The classification

could either be a “best guess”—classify according to the type of the
nearest or most common points in the cluster—or else a fuzzy
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classification into more than one category.38  This is comparable to how a
human would evaluate a similarly ambiguous case.  A significant number
of overlapping clusters indicate that the set of independent variables being
used for classification is not sufficient to unambiguously solve the
problem.

Cluster D: The case is near a small cluster of cases of a single type.
Interpretation: Classify the case using the type of the nearby cases, but do so with a low

degree of confidence.

Point E: The case is distant from all other cases.
Interpretation: This case is distinct from any others in the data set, and therefore cannot

be classified with any confidence.

With this approach, classification, ambiguity and confidence are all handled in a
single structure.  The disadvantage of the method is that a large and representative
number of cases are needed before classification can be done with confidence.  ID3, in
contrast, could correctly classify a large number of cases based on a single example,
provided the characteristics of the feature vector uniquely defined the case.

Missing values can be dealt with in nearest neighbor systems in two ways, both of
which basically ignore them.  Missing values may occur on a dimension of little
importance, so they can simply be dropped from the distance calculations without
affecting the classification.  Second, and more systematically, a case with missing values
can be projected onto the space formed by those dimensions where information is
available and the distance to clusters or centroids computed in that reduced space.  The
usual set of statistical approximations, such as replacing the missing value with its mean,
also frequently work well.

Centroids
As noted in Chapter 3, humans do pattern matching against archetypal, and often

hypothetical, cases rather than with actual cases.  When one speaks of a “revolution”, the
reference is to the general concept of revolution, not a specific crisis.  In the nearest
neighbor system, these templates or ideals have a straightforward analog in the centroid
of a cluster of points.  The centroid summarizes the information of the cluster, even
though it may not correspond to an actual point.  For most purposes of classification, a
cluster can be replaced by its centroid, which provides considerable economy in the
storage and transmission of information.

Consider the problem of defining a “revolution”.  This could either be learned by
studying a large number of actual revolutions and inducing the general concept (the
centroid), or one could be given the location of the centroid that had been determined by

                                                  

38 In cluster analysis, a numerical measure of the degree of category membership can be easily computed
using the distances to nearby points or by tabulating the points within a certain distance of the case.  For
example, if an overlapping cluster contains 6 cases of type B and 4 of type C, a reasonable fuzzy
classification would be 60% probability of category A and 40% probability of category B.
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someone else’s earlier inductive work.  This location could be either an actual revolution
close to the center of the cluster or a hypothetical case.

This parallels the technique of teaching political behavior by using a combination
of archetypal examples and general principles.  In addition to locating the concept in a
feature space, the examples provide information on the key dimensions used for
classification.  Usually such instruction provides explicit counter-examples in order to
distinguish the concept being taught from others with which it might be easily confused;
this information provides the locations of nearby clusters that might in fact be closer to an
ambiguous case.  For example, when teaching the elementary concept of revolution, most
instructors combine also discuss the counter-examples of coups d’état and civil wars.

Constructing a centroid is not trivial, particularly if a complicated non-Euclidean
metric is involved.  A centroid can always be approximated, however, with an actual
case: this is computationally straightforward because one can simply compute the mean
distance of a point from all other points of its type and choose the case with the smallest
mean distance as the representative.  In many metrics, cluster centroids are sensitive to
outlying values, so the best centroid may be one constructed from “typical” cases rather
than from the complete population of cases.

If a reliable set of centroids can be established, then the computational burden of
the nearest neighbor method drops considerably: a new case need by compared only with
the centroids rather than with all of the cases.  The disadvantage of this approach is that
centroids fix the classification knowledge and the emergence of a new cluster at the
boundary of two existing clusters might go unnoticed.  In a situation of on-going training
or prediction, a more conservation classification system might employ a learning scheme
such as the following:

1. Establish the clusters and metric using the training cases
2. Replace the training cases with their centroids; weight the

confidence of the centroid by the number of training cases in
the original cluster.

3. Classify new cases using only centroids.
4. Add new cases to the case list and repeat steps [1] and

[2]whenever a. Some change occurs in the external environment
OR b. The system begins to produce a large number of errors

Correspondence Analysis
A method variously known as “correspondence analysis” (CA) or “dual scaling

analysis” provides a simple illustration of the use of clustering.39  Briefly, a CA map is an
orthogonal projection of a set of points in N-dimensional space to a 2-dimensional plane
chosen to minimize the distance between the original points and the projected points as
measured with a chi-square metric; Figure 5.15 illustrates this process schematically.
The method is quite similar to the singular value decomposition (SVD) methods used in
principal components analysis and canonical correlation analysis, and uses much of the
same mathematics.  CA projects both the cases and the features onto planes that are

                                                  

39 Greenacre (1984) provides a thorough, if less than totally transparent, discussion of this technique.



Machine Learning 169

scaled so that features tend to be plotted in the same general vicinity as the cases with
which they are most strongly associated40.
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Figure 5.15.  Projecting Group Centroids to a Line

The projection of the original set of clusters in Figure 5.15 onto a linear subspace
would produce a new clustering similar to that in Figure 5.16.  In a typical
correspondence analysis, the projection is from a space of much higher dimension into a
two-dimensional space, but the geometrical principles are the same.

E DCA B
Centroids

Range of Group

Figure 5.16.  Clusters in the Subspace

Correspondence analysis, following the SVD technique, associates an eigenvalue
with each dimension.  The cumulative proportion of the eigenvalues indicates how much
of the total distance between the points in the original space is retained when those points
are projected into the subspace, and therefore provides a measure of the “variance
explained” by the subspace.  The highest eigenvalue is associated with a line (1
dimension) of maximum variance; the two highest eigenvalues are associated with a
plane (2 dimensions) and so forth.  While most CA maps give only the highest two

                                                  

40 This spatial association of features and cases is one of the distinguishing features of correspondence
analysis but it will not be exploited in the analysis here; I'm only interested in the chi-square metric and the
projections.
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dimensions, higher dimensional maps are appropriate when the first two dimensions
leave much of the variance unexplained.

Much of the early development of correspondence analysis was done by the French
linguist, Jean-Pierre Benzécri, who wished to compare languages on the basis of
allowable vowel-consonant combinations.  Each language was described by a large
number of features based on whether a vowel-consonant combination was allowed.
Benzécri assumed that similar languages would be located close to each other in this high
dimensional space while languages that were different would be located far apart.
Because the main role of CA is the reduction of the dimension required to describe the
data, the approach is geometrical, rather than statistical.41  In social science terminology,
CA is a descriptive, or data reduction technique, though it borrows concepts from
statistics and the use of the chi-square metric is obviously motivated by statistical
considerations.

Application
Nearest neighbor methods are typically used in classification problems, and the

data they use are the familiar rectangular matrix of cases and variables.  The example I
will use to illustrate the approach is somewhat different: the analysis of two sets of rules
used to define the characteristics of international systems.  These come from
Rosecrance’s analysis of the European system in Actions and Reaction in World Politics
(1963) and Kaplan’s theoretical systems in System and Process in International Politics
(1957), which he extends to a total of nine systems in Kaplan (1969).  This exercise will
demonstrate both the extent to which geometrical clustering can be used to find
underlying regularities in a complex set of data, and, in passing, demonstrate an approach
to the formal analysis of qualitative sets of rules.

Rosecrance and Kaplan both describe a number of different historical or
hypothetical international systems using sets of rules and attributes.  Each system can be
associated with a feature vector based on those rules and attributes.  In the simplest
approach—which I apply to the Rosecrance systems—one can use a binary feature vector
whose dimension corresponds to the total number of rules in all of the systems.  The
feature vector for each system will contain a one if the rule is present and a zero
otherwise.  Alternatively, the vector can describe the degree to which a rule is present in a
system; this is used for Kaplan.

With  a sufficiently large number of systems, the full dimensionality of the vector
space could be used for clustering the systems but because Rosecrance and Kaplan
describe only a small number of cases, CA is used instead to reduce the dimensionality to
two continuous dimensions.  By reducing the dimensionality of the case descriptions to a
plane, it is possible to visually examine the spatial relationships among the various
systems.

Rosecrance identified nine different European international political systems for the
past 250 years.

                                                  

41 The rallying cry of the French CA approach is "statistics is not probability"; this has a clear intellectual
affinity with the exploratory data analysis approach in the United States.



Machine Learning 171

I Eighteenth Century 1715-1788
II Revolutionary/Napoleonic 1789-1813
III Concert of Europe 1814-1822
IV Truncated Concert 1823-1847
V German Unification 1848-1871
VI Bismarckian Concert 1872-1889
VII Imperialism 1890-1917
VIII Inter-War 1918-1942
IX Cold War 1948-1989

I coded each of these for the presence or absence of eleven features identified
explicitly by Rosecrance.  These features deal primarily with the political objectives of
the actors (e.g. status quo, revolutionary, revisionist, conservative ) and the presence of
dynastic or nationalist actors.  The full list of features and the coding of each system are
given in Appendix A.

The feature vector places each case in an 11-dimension binary space.  Figure 5.17
show the CA projection of this space onto a real-valued plane.42  By convention, the
horizontal dimension corresponds to the highest eigenvalue; the vertical dimension to the
next highest.  While the clustering is not counter-intuitive and shows a clearly defined
cluster in the lower-left corner of the map, there is no immediately obvious interpretation
to the two dimensions43.  The significance of the cluster becomes apparent when one
examines the movement of the system over time, as illustrated in Figure 5.18: The cluster
is a “core regime” that the European system returns to after temporary departures.  In
Figure 5.18, these departures from the core are indicated with dotted lines; the returns
with solid lines.  The one exception to this pattern is the transition from the
Revolutionary/Napoleonic system to the Concert of Europe, which is not in the core.
However, the next transition, to the Truncated Concert, returns to the core.44

                                                  

42 The correspondence analysis algorithm described in Greenacre (1984) was implemented using
eigenvectors were extracted with the Weilandt routine from Borland International's Turbo Pascal
Numerical Methods Toolbox software library, Macintosh version 1.0.

43 The plane explains only about 60% of the variance of the system.  The third largest dimension—which
adds another 15% to the variance—primarily differentiates the Concert of Europe and Cold War systems
from the remaining systems.  This makes political sense as both were very stable systems established after
large wars.

44 I experimented with coding a "post-Cold War" system by setting the Communist feature to zero; this in
fact creates a system that is closer to the core, but not dramatically.  If Rosecrance's "Secure" feature is also
set to one, the movement is greater, with the new system located on a line between the Cold War and Inter-
War systems, about two-thirds of the way towards the latter.
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Figure 5.17.  Map of the Rosecrance Systems

   

Figure 5.18.  Rosecrance System Transitions

This analysis does not necessarily prove the existence of a “core regime” in
Europe; it merely shows the presence of such a concept in Rosecrance’s presentation of
those systems.  Because Rosecrance was trying to develop a coherent theory, this finding
is perhaps not surprising, but the pattern is certainly less than obvious when one
examines only the 11-dimensional vectors.

Kaplan’s systems provide another demonstration of this technique.  Kaplan’s
hypothetical systems were coded using a 1 to 9 ordinal scheme (see Appendix A)
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reflecting the degree of the presence of a feature.  The correspondence analysis map of
the complete set of Kaplan systems is shown in Figure 5.19.  The horizontal dimension is
essentially the “tightness” of the system, ranging from the most structured systems on the
left to the least structured on the right.  The vertical dimension, in contrast, serves only to
differentiate the “Balance of Power” system from the remainder of the systems.  This
configuration should come as little surprise to anyone who has ever studied (or taught)
Kaplan, who describes the balance of power system in substantially greater detail than
any of the remaining systems.  These two dimensions account for about 80% of the
variance, substantially more than explained by the first two dimensions in the Rosecrance
systems.   

Figure 5.19.  Map of the Kaplan Systems

Correspondence analysis, like any linear technique, is affected by outliers.  If
balance of power system is removed from the analysis, the horizontal dimension stays the
same, but the vertical dimension emphasizes a new outlier: the unit veto system.  As
before, a conventional analysis of Kaplan’s models would find the unit veto
system—where all states have nuclear weapons and can potentially destroy each
other—to be atypical.  Removing the unit veto system produces the map in Figure 5.20.
The “tightness” of the system is now on the vertical dimension; the interpretation of
horizontal dimension is less obvious but is probably related to the level of conflict in the
system.
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Figure 5.20.  Reduced Map of the Kaplan Systems

Discussion
I argued in Chapters 2 and 3 that one of the problems with the behavioral approach

was its focus on very simple data structures, typically small numbers of interval-level
variables.  The classical approach, and human analysts more generally, tend to employ
much more complicated data structures, and sets of rules are one particularly salient
example of such structures in the study of political behavior.  Nearest neighbor methods
are dependent on numerical computation and as such probably have little in common
with the actual mechanisms of human associative memory.  Humans are poor at
numerical computation, and they are almost hopeless at the systematic analysis of high-

dimensional vector spaces.  However, in the grand tradition of Wigner’s
observations about the “unreasonable effectiveness of mathematics” (Wigner 1960),
nearest neighbor methods often provide a surprisingly effective quick-and-dirty means of
exhibiting human-level expertise on many classification problems.

This analysis of the Rosecrance and Kaplan systems is only illustrative, but it
demonstrates the possibility of formally analyzing set of rules.  Even the fairly simple
coding schemes used here produce results consistent with human understanding for
Kaplan’s systems, and for the Rosecrance system provide insights not immediately
obvious from the raw data.

Compared to many nearest neighbor analyses, the Kaplan and Rosecrance systems
have very low dimensionality; I suspect that this approach would be even more
interesting in systems with a much larger number of rules.  To take a hypothetical
example, it might be interesting to cluster nation-states on the basis of their rules for
dealing with multinational corporations or with environmental protection, as well as
looking at the change in those rules over time.  This would presumably produce some of
the same dimensions a human analyst would see—for example one would expect to find
the most important regarding MNCs to be found on dimensions involving market versus
planned economies and the level of economic development—but the analysis might also
identify clusters and dynamics not evident from the statement of the rules alone.

While my discussion has emphasized the importance of clusters of data points, the
regions of the vector space that are empty can also provide important information.  In an
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otherwise densely-populated vector space, voids probably indicate feature combinations
that are inherently unstable, such as centrally-planned economies with independent labor
unions, or military conflict between democracies.  In most actual analyses, it may be
difficult to distinguish these situations from voids that are just an artifact of a small
sample size, but, for example, if points in a time series were observed to occasionally
enter a void but never linger in it, one could conclude that the feature combinations
within the void were probably socially unstable.

Cluster analysis—alone or in combination with other machine learning and
statistical techniques—seems to be emerging as the techniques of choice for knowledge
discovery in large data bases (Piatetsky-Shapiro and Frawley 1989; Fayyad et al 1995),
also known as “data-mining”.  Many clustering methods are memory-intensive and have
only recently become practical as computers with tens of megabytes of RAM and
gigabyte-sized hard drives have become widely available.  While clustering methods
have been something of a curiosity in the past, at least in the social sciences, they are
likely to see increasing use in the future.  To the extent that classification by clustering
has characteristics in common with human expert classification—particularly the
increment incorporation of knowledge from new cases, the use of centroids to create
archetypal cases and the ability to compute measures of confidence—these methods may
be useful models for individual and organizational learning and pattern recognition.
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APPENDIX: Data Sets

Butterworth Data
The data are from Butterworth’s “Interstate Security Conflicts, 1945-1974” study

(Butterworth 1976; ICPSR 7586).  This data set was originally collected for the purpose
of studying the effects of international mediation on political conflict.  Briefly, the set
consists of

…postwar conflicts that centrally involved specific power-political aims and
demands having direct impacts on national behavior, and that were perceived
internationally as being focused on political and security affairs. … Cases are
characterized in terms of the goals of parties and management agents … based
upon collective statements by international actors, statements by the parties and
assessments by expert observers. … As efforts to manage these conflicts we
included initiatives from any actor (except the parties [to the conflict]) who
achieved access to the parties and issues and whose manifest intention was to
prevent the conflict from escalating. (Butterworth 1976:3-4)

The data set covers 310 cases of interstate conflict and codes 47 variables dealing
with conflict characteristics, actions to manage the conflict and the outcome of that
management. The variables used are: number of agents, fatalities, likelihood of
abatement, likelihood conflict will disappear, likelihood of spread, likelihood of
superpower war, type of war, strategic category, strongest antagonist, power disparity,
duration, degree of spread, ethnic conflict, system period, previous involvement, agent’s
bias, agent’s autonomy, phase of intervention, phase of first action, phase of strongest
action, leadership, level of agreement, action and relative power.

The Butterworth data reports the effect of the management effort on five
outcomes—stopping hostilities, abating the conflict, isolating the conflict, restraining the
conflict and settling the conflict.  These are treated as dependent variables in the ID3 and
neural network analyses.  All five variables have the same codes: in the absence of
activity by the agent, the outcome of the conflict with respect to the behavior would be

0 No different
1 Somewhat different
2 Very different
9 Variable is inapplicable to this situation

The five dependent variables, the number of valid cases and the distribution of
their values is given in the Table 5A.1.

Table 5A.1.  Distribution of values by dependent variable

Variable                            N Values
                                                                                            < 0 >      < 1 >       < 2 >

Stopping Hostilities 98 65% 26% 9%
Abating the Conflict 192 57% 31% 12%
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Isolating the Conflict 106 74% 18% 8%
Restraining the Conflict 191 54% 32% 13%
Settling the Conflict 192 73% 16% 10%

The cases used in the analysis were selected according to two criteria: First, only
those cases identified by Butterworth as “Core Cases” (variable 3) were used.  This
means that each conflict was considered only once; the full data set has multiple entries
on some conflicts because multiple agents attempted to manage it.  Second, if a
dependent variable was coded ‘9’ (“Inapplicable”), the case was not included.
Application of these two criteria left between about 100 and 200 cases depending on the
dependent variable.

COPDAB
The data used in the test are from a COPDAB daily events set for the period 1948-

1978 (see Azar 1980, 1982).  The version used was a set made available by Azar to the
Merriam Laboratory for Analytical Political Research at the University of Illinois and this
is presumably similar to the early versions of ICPSR 7767 COPDAB data set.45

Only three dyads are used: USA/UK, USA/France and USA/West Germany.  This
is the densest part of the COPDAB data and was the focus of the GA analysis because
variance in the archives depended on a high frequency of events.  Events were coded
non-directionally—in other words the USA/UK set included both (USA as actor)/(UK as
target) and (UK as actor)/(USA as target) events.

The event sets are coded only for occurrence, not frequency: five instances of an
event of code 7 are coded the same as one instance.  Since the COPDAB coding scheme
has 15 categories, 15 bits can represent the occurrence of events in any period.46

The Rosecrance Systems
The Rosecrance systems were coded by using the “Direction” and “Control”

variables in Rosecrance’s systems diagrams.  These are quite unambiguous and therefore
a binary coding system can be used.  System IX—the Cold War system—is a bit of a
problem because it contains several categories not found in the other systems: the new
“revisionist” category is coded as the same as “revolutionary”; the system has both

                                                  

45 The original ICPSR COPDAB, however, was withdrawn for several years for correcting by Azar, who
died before completing the work; the corrections were eventually finished by his students and the data used
here may or may not resemble those found in the COPDAB set currently at the ICPSR.  And meanwhile
my copy of the data used in this study are on 160KB, 5-1/4" floppy disks formatted for an Apple II.  This is
why we need a replication archive... (see discussion in PS September 1995)

46Coding only for occurrence is a first approximation that was used because of the low data density is low;
it would be simple to expand the coding scheme to record frequency information by allocating additional
bits to each code.  For example, if one allocated four bits per code and had a situation where there were
three events of type 05, eight of type 06 and twelve of type 07, that part of the string would look like

…… 0 0 1 1 1 0 0 0 1 1 0 0 ……
……[5 5 5 5 6 6 6 6 7 7 7 7]……
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“secure” and “insecure” codes so it is coded “insecure”47; the “liberal-democratic” and
“communist” codes are used.

Table 5A.2.  Coding for the Rosecrance Systems

A B C D E F G H I J K
18th Cent 1 0 0 0 0 1 0 0 1 0 0
Revolution 1 1 0 0 0 0 1 0 0 0 0
Concert 0 0 1 0 0 0 0 1 1 0 0
Trunc Conc 0 0 1 1 0 1 1 0 1 0 0
German Unif 0 0 0 0 1 0 0 1 0 0 0
Bismarckian 1 0 0 0 0 0 1 0 1 0 0
Imperialism 0 0 0 0 1 0 1 0 0 0 0
Inter-War 1 0 0 1 0 0 1 0 1 0 0
Cold War 1 1 0 0 0 0 1 0 0 1 1

Features:
A Status Quo B Revolutionary C Conservative
D Reform E Self-Preservation F Dynastic
G National H Dynastic-national I Secure
J Liberal-Democratic K Communist

The Kaplan Systems
Kaplan’s system is more ambiguous than those of Rosecrance; as numerous authors

have noted, there is less to Kaplan than meets the eye.  Kaplan rules are stated in “fuzzy”
terminology—systems are compared using terms such as “more”, “much more” and so
forth—so I used a code of 1 through 9 to describe the degree to which a feature was
present.  A code of 9 means the characteristic is strongly present; 1 means the
characteristic is absent.  The designation of the features is somewhat arbitrary but
attempts to identify the main elements emphasized in Kaplan’s typology.

Table 5A.3.  Coding for the Kaplan Systems

A B C D E F G H I J
Balance of Power 1 1 1 8 1 1 1 1 1 1
Loose Bipolar 6 4 1 2 5 3 3 7 5 4
Tight Bipolar 8 1 1 5 5 3 3 1 7 8
Universal 6 9 5 1 1 3 3 7 5 4

                                                  

47 If "secure" is set to 1, the "Cold War" case moves to a point just down and to the right of the
"Revolutionary" case; the remainder of the map changes very little.
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Hierarchical 3 9 9 1 1 3 3 7 5 1
Unit Veto 2 1 1 2 1 1 9 5 1 1
Very Loose Biplr 3 5 3 3 1 5 4 7 7 4
Detente 3 7 1 3 1 2 4 7 6 1
Unstable Bloc 5 3 1 7 7 7 8 4 7 8

Features:
A Fixed alliances B Universal actor
C Political system D Mediated rather than war
E Actors eliminated F Conflict between major and minor actors
G Nuclear weapons H Neutral states
I Equality rather than hegemony J Conflict between major actors





Chapter 6
Sequence Analysis

International conduct, expressed in terms of event data, is the chief dependent
variable of international relations research. ... [The] prime intellectual task in the
study of international relations is to account for actions and responses of states in
international politics by relating these to the purposes of statecraft … tracing
recurring processes within these components, [and] noting systematically the
structure and processes of exchange among the components….  Obviously the
classical definition of diplomatic history is less ponderous and more literary than
the general system definition of the task but both, as we shall seek to show next,
carry about the same information and involve nearly the same range of choices of
inquiry and analysis.

Charles McClelland

The machine learning techniques discussed in Chapter 5 are very general: they can
be, and have been, applied in domains ranging from medical diagnosis to stock market
forecasting.  This chapter, in contrast, will focus on a problem more specific to the
analysis of international politics: event sequences.  As discussed in Chapter 3, sequences
are one of the primary means by which analysts solve the fundamental problem of short-
term prediction in determining the likely consequences of their own policies and the
intentions of their opponents.  Political analysts have, in associative memory, a large
number of sequences acquired through experience and the study of history, and
“understand” observed political events when they can match those events to a sequence
stored in memory.

If this process of sequence recognition is as important as I’ve suggested,
computational modeling should place a high priority on mimicking it.  This, however, is a
more difficult process than rule-based modeling because sequence recognition occurs in
long-term memory and is a sub-cognitive process.  Organizational rules, in contrast, are
explicitly articulated and are limited by the information transmission bandwidth available
in the organization.  While we know that an organization’s behavior cannot be modeling
entirely by its explicit rules, those rules provide a solid foundation from which to start a
model, particularly when judiciously supplemented by tacit information.

Sequence recognition, in contrast, presents problems at every step.  First, the
amount of information is very large.  Foreign policy analysts have a tremendous store of
sequence-based information, including formal political knowledge such as the history of
the Cold War and the evolution of the Westphalian nation-state system, current
information on past activities of individual actors—Saddam Hussein, Boris Yelstin; the
differences in Japanese and British foreign policy bureaucracies—and “common sense”
knowledge about human behavior, usually learned informally—“hit someone and they
won’t be happy, and they may hit you back, or if they are smaller than you they may find
someone else to hit you back.”.  The quantity of such information is unclear, but it
probably runs to tens of thousands of sequences of varying lengths.

Second, the human brain accesses this information associatively, on the basis of
content.  As noted in Chapter 3, a typical undergraduate foreign policy exam question
such as “List three successful and three unsuccessful uses of economic embargoes by the
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USA in the post-WWII period” can be answered quickly and relatively easily by an
expert, and part of the training of an analyst involves learning from practice to deal with
these types of questions.  A computer, in contrast, does not have associative recall: at the
basic level, it can find things only by a literal search of its memory, though some methods
of organizing memory are more efficient than others.  While an organization can make
use of the associative memories of the individuals who comprise it, the explicit long-term
memory of an organization—typically its standard operating procedures and its physical
files—is more like that of a computer than that of the brain.  In order to find something in
a file, you either have to know where it is already, find it through an index that
necessarily emphasizes some types of information at the expense of others, or else you
need to look at everything in the file.  This, in turn, is why computers have been much
more effective in replacing routine organizational work (for example record-keeping)
than routine individual work (for example teaching).

Finally, the process by which the matching of sequences is done is largely sub-
cognitive.  Not only does the process occur relatively quickly without “stopping to
think”, but even if one does stop to think, one gets only a partial indication of how the
matching was done.  For example, the question on economic embargoes appears to
involve first matching to the general concept of “economic embargo”, then classifying
those instances into “successful” and “unsuccessful”.  That classification, in turn, is based
on the retrieval of still more historical cases, since it is answered in the context of a
“successful compared to what?” in United States history and other history.

When I try to work out the embargo problem, I find I can articulate some of the
steps.  For example, the two cases that immediately come to mind are Cuba and Vietnam,
which have been in the news lately.1  I then started thinking of US enemies during the
past 40 years, and check those for embargoes—Libya, Iran and China come to mind, then
US pressure on the USSR over the issue of immigration restrictions.  I also recalled,
directly from the “embargo” stimulus, teaching an article that pointed out that most of the
US embargoes were for economic reasons rather than political, but unlike the students
who answered this question on the exam in my foreign policy class, I don’t have these
cases actively in memory and would have to look them up.

This protocol gives some hints as to how my memory is organized, but it is not
sufficient to create an algorithm.  My description of the process depends heavily on the
fact that examples just pop out of memory, in a somewhat unsystematic fashion—for
example the current embargo of Serbia did not spontaneously appear, perhaps because it
has not been integrated with the other memories—and based on this information, I can
then assemble a fairly logical set of cases.  Because of these difficulties, the literature on
event sequence recognition—as distinct from the large literature on event data analysis
(Peterson 1975; McGowan et al 1988; Schrodt 1994)—is substantially more limited than
that on rule-based systems or the general-purpose machine learning methods.

Within the AI literature, most of the work on sequences is based on the Schank and
Abelson (1977) concept of scripts.2  While the script model is very useful, this work has

                                                  

1A statement that has remained true through several drafts of this manuscript...

2 An alternative approach is to use complex knowledge structures, rather than sequences, to describe a
situation.  Mallery, Duffy and Sherman (Mallery and Sherman 1993; Mallery and Hurwicz 1987; Duffy
1991) have done extensive computational modeling using historical precedents described by the highly
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been almost entirely deductive: a script is constructed and then finely tuned to match a
very limited domain.  The best known script from the Schank-Abelson tradition is the
“restaurant script”, which handles events that would occur in the process of a visit to a
restaurant.  Scripts can, however, to extended to less trivial domains; for example
Kolodner’s (1984) CYRUS program deals with the official activities of Secretary of State
Cyrus Vance and contains script-like structures reflecting the event sequences that a
Secretary of State might encounter.  With an appropriately refined script, a system can
interpret, in considerable detail, the events in a specific domain.  Unfortunately, the
sequence recognition needed for the analysis of international affairs requires the opposite
approach: relatively shallow knowledge over a very broad domain.

The techniques that I develop in this chapter are based on some generalizations of
the machine learning techniques discussed in Chapter 5 and they are broad rather than
deep.  My objective is to begin to develop some machine learning methods that will allow
a program to do three things:

• Recognize that two sequences are similar; in other words, simulate the basic
sequence recognition function;

• Break a sequence down into its component parts;

• Use sequence similarity and parts to classify sequences into general categories
such as war/nonwar.

Because of the complexity of international behavior, a robust system is ultimately
going to need to have the ability to learn from example: we cannot afford to write
thousands of political equivalents of the restaurant script.  The systems discussed here
learn by example from event data, but do so at the expense of detail.  Before discussing
the basic techniques, I will consider the general structural problems involved in political
sequences, and I will end the chapter with a discussion of the possibility of using
syntactic approaches.

Components of Sequence Recognition
In the simplified approach that I will be using in this chapter, the ideal sequence

recognition system would require three components.  First, one needs a knowledge
representation structure for the sequences themselves.  As discussed in Chapter 3,
international event data are sufficient for the task, and event data have the additional
advantage that they can be coded directly from machine-readable text (see Gerner et al
1994), though the source I will use in this chapter was human-coded.  Human sequence
recognition in all likelihood tags event sequences with some additional contextual
information concerning the national and international environment—the outbreak of the
“Soccer War” between El Salvador and Honduras in 1969 is classified differently than
the outbreak of the Russo-Afghan war in 1979—but the isolated sequence provides a
starting point and the problem of matching contextual information is not likely to be more
complex than matching the sequences.  Second, one needs a metric that will indicate the

                                                                                                                                            
structured SHERFACS data set; as noted in Chapter 5, Petrak, Trappl and Fürnkranz (1994) have done the
same with the KOSIMO database. .The case-based reasoning literature (see Kolodner 1988, 1993) can
provide additional guidance on this, though case-based reasoning systems tend to be very domain-specific.
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degree of similarity between two sequences.  Finally, one needs to have a very large
number of historical sequences in memory.

Given these three components, the sequence recognition problem can be reduced to
a nearest-neighbor problem: Take an observed set of events, compute the distance
between that sequence and all of the sequences in memory (or a set of archetypal
centroids representing general categories of behavior), and classify the sequence using its
nearest neighbor.  While this provides a general approach, the practical problem of
sequence matching is complicated by three factors: events are substitutable; the stream of
observed events is composed from parallel sequences; and sequences are partially
ordered rather than strictly ordered.

Substitution
As Most and Starr (1984) point out, one of the major problems in finding law-like

statements in international politics is “substitutability”: actions that appear on the surface
to be very different can be equivalent in a political context.  For example, the two
sequences

[Nixon uses the phrase “People’s Republic of China” rather than “Red China” in a
speech]
[USA/PRC exchange ping-pong teams]
[USA/PRC negotiate re-establishing relations]

[Nixon uses the phrase “People’s Republic of China” rather than “Red China” in a
speech]
[USA invites PRC scientists to conference on earthquakes]
[USA/PRC negotiate re-establishing relations]

would be seen by most political analysts as equivalent: the USA and PRC had to do
something to signal mutual acceptance in 1970; they did so through a friendly table tennis
competition but a scientific conference would have accomplished much the same thing.
In this context, the two events are equivalent.

While one could not inductively discover the counterfactual equivalence
represented in this example, it would be desirable to determine these equivalence sets
inductively.  For example, states have a variety of diplomatic ways of expressing
displeasure, including recalling ambassadors for consultation, formally protesting,
suspending talks in other arenas (e.g. trade, scientific cooperation), threatening to
suspend aid and so forth.  Instead of treating each such instance as a separate event
sequence, it would be useful to create a general sequence that looks like

 Aa Ab [Ax or Ay or Az] Ag Af Ae Af

The Levenshtein metric discussed below is one means of doing this.

Parallel Structures
The international event stream is typically generated by multiple initiatives that are

underway simultaneously but which are temporally independent to a large extent.  If a
state is pursuing two initiatives described by the sequences A-B-C-D and W-X-Y-Z, the
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event sequences A-B-W-X-C-D-Y-Z, A-W-B-X-C-Y-D-Z and W-X-A-B-C-D-Y-Z are
equally valid manifestations of those two sequences even though the ordering of the
events in the sequences are very different.

Negotiation 
with

Allies

Military
Activity

Threat
Activity

International
Mediation
Attempts

Political and
Military 

Mobilization

Direct
Negotiation 

with Adversary

Time

Figure 6.1.  Schematic Representation of Parallel Event Sequences

A schematic representation of parallel event structures in an international crisis is
illustrated in Figure 6.1.  The term “parallel” applies in two ways.  First, within a crisis
there are multiple initiatives underway at any given time.  For example, in the months
prior to Pearl Harbor, Japan was simultaneously trying to negotiate an accord with the
United States while preparing for military actions; had the negotiations succeeded, the
military option presumably would not have been pursued on 7 December 1941.  Second,
if these subsequences are truly characteristic of international behavior, they should occur
in multiple historical instances, which means that it should be possible to extract the
subsequences from a set of event sequences describing similar classes of behavior.

Partial Ordering
Parts of a sequence often contain pre-conditions:  In order for certain events to

occur, other events must occur first to prepare the system for the consequent event.
However, because an event may have multiple preconditions, and the preconditions can
be satisfied in any order so long as they occur before the consequent event, the sequence
is only partially ordered.  This type of structure follows work by Heise (1988a, 1988b)
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who has developed it for the study of general human interactions, for example
ethnographic data, stories or fairy tales.

Figure 6.2 shows a partially-ordered structure for the sequence “Breakfast”:

Drink Coffee

Pour Cereal Cook Eggs Cook Toast

Butter Toast

Eat

Wash Dishes
Figure 6.2.  A Partially Ordered Event Structure

This would generate any of the following sequences:

[Drink coffee, Cook Eggs, Pour Cereal, Cook Toast, Butter Toast,
Eat, Wash Dishes]
or

[Drink coffee, Cook Toast, Butter Toast, Pour Cereal, Cook Eggs,
Eat, Wash Dishes]
or

[Drink coffee, Cook Toast, Cook Eggs, Butter Toast, Pour Cereal,
Eat, Wash Dishes]

The sequence would not match

[Cook Eggs, Pour Cereal, Cook Toast, Butter Toast, Drink coffee,
Eat, Wash Dishes]
or

[ Drink coffee, Butter Toast, Pour Cereal, Cook Toast, Cook Eggs,
Eat, Wash Dishes]

because in each of the latter examples one of the events occurs out of the allowed
sequence.

Partial ordering also occurs in international behavior: when states seek to achieve
an objective, they initiate an often complex sequence of events that will result, ceteris
paribus, in the objective.  For example, if a state wishes to initiate peace talks, it will
contact its allies, the United Nations, initiate trial balloon proposals and so forth.  In
international relations, these initiatives are often not fully completed because they are
interrupted by opposing initiatives by other states or through changes in policy, but the
plan was there.  Such interruptions also provide a reason to expect that there will be



Sequence Analysis 187

greater short term regularity than long term regularity in international events, since a
number of attempted event sequences fail for every sequence that succeeds.

Partial ordering complicates pattern matching against a temporally-ordered event
stream such as that found in event data or in newswire reports because it results in
permutations being allowed in some events but not others.  If one knew the underlying
structure, it would be simple to verify that a particular event sequence satisfied that
structure, but inductively determining the structure is difficult.  Unlike the previous two
problems, I will not be demonstrating a solution to partial-ordering, though using a
syntactical approach might provide one means of doing this.3  This asymmetrical
situation is similar to that found in computational linguistics: given a grammar and
lexicon, it is simple to parse a sentence to determine whether it is grammatically correct
but it is exceedingly difficult to inductively extract the rules of a grammar solely from a
set of texts.

Levenshtein Learning Algorithm4

The Levenshtein metric (Sankoff and Kruskal 1983) is a sequence comparison
technique that originated in information theory and is now commonly used to analyze
sequences of sound or DNA; Mefford (1984, 1985) proposed using it as a means of
sequence comparison in international relations.  The Levenshtein metric uses a large
matrix of numerical weights to determine the distance between two sequences; these
weights can be set, for example, to produce small distances between sequences of the
similar type and long distances between sequences of dissimilar type.

I will demonstrate this method using the crises in the Behavioral Correlates of War
(BCOW: Leng 1987) event data set; discriminating crises that don’t involve war from
those that do.  The weight will be determined using an example-counterexample machine
learning protocol.  To learn to discriminate between two classes of objects, the machine is
presented with examples from each class and adjusts its knowledge structure—the matrix
of Levenshtein weights—on the basis of those examples.  Like ID3, the knowledge
structure of the Levenshtein metric is sufficiently complex that it can achieve 100%
discrimination among the training cases, so it is validated with split-sample testing.

The Levenshtein distance between two sequences is the sum of the weights of the
operations needed to convert one sequence into another.  If a and b are two sequences
[a1 a2 a3 ... am] and [b1 b2 b3 ... bn], the Levenshtein approach converts one sequence to
the other using the operations

Delete an element from a
Insert an element into b
Substitute bj for ai

                                                  

3I haven't searched for partially-ordered structures for the simple reason that I haven't found an efficient
algorithm for doing so.  The tricky part is figuring out a way of allowing substitution without the
subsequences degenerating to a large number of special cases, as well as limiting any exponentially
expanding searches.  If this part of the problem could be solved, then adding the more complicated partially
ordered structures can probably be done with a few manipulation rules.  Algorithms can be found that work
on complete data but complications arise when dealing with data that has missing events.

4 Parts of this section appeared earlier in Schrodt 1991a.
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Using the example in Sankoff and Kruskal (1983,11), one could convert the
sequence “W A T E R” to “W I N E” by the operations

W A T E R
Substitute I for A

W I T E R
Substitute N for T

W I N E R
Delete R

W I N E

The operations used in computing the Levenshtein distance are those minimizing
the sum of the weights.  A dynamic programming algorithm for determining this
minimum is presented on the next page.

The knowledge structure of a Levenshtein metric lies in the insertion, deletion and
substitution weights.  Changes in a sequence that reflect important differences should
have high weights; those reflecting trivial differences should have low weights.  For
example, in linguistics, it is clear that as words migrate from language to language,
vowels are more likely to change than consonants, and if consonants change, they are
likely to change only slightly (an “s” might change to “c” or “z” but probably not “b” or
“t”).  Thus we see similarities between the English “peace”, French “paix” and Latin
“pax”, and similarities between the Hebrew “shalom” and Arabic “salaam”, but see
considerable differences between the two groups of words.

The extension of this principle to international event sequences is straightforward
(Mefford 1984).  Certain international events are quite comparable— for example
“mediate” (BCOW code 12142) versus “negotiate” (BCOW 12121)— whereas others are
very different—for example “peace settlement” (BCOW 12361) and “continuous military
conflict” (BCOW 11533).  One would also expect that common events (e.g. the
ubiquitous “consult” and “comment” codes in events data) should be inserted and deleted
with little cost, whereas rare events such as agreements or the beginning of military
conflict would be costly to insert.  Two international event sequences would be
considered similar if one sequence could be converted to the other using operations that
substitute like event for like event; the two sequences would be quite different if they
could only be converted by substituting unlike events.
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Algorithm for Computing Levenshtein Distances

Function Leven_dist(a,b:seq):real;
{ This code follows the Levenshtein distance algorithm described in
Kruskal (1983) }
{a,b are arrays containing the sequences; the 0th element holds the length
of the } {sequence;}
{weight[i,j] gives the insertion, deletion and substitutions weights;}
{dist[i,j] is the matrix used to compute the distance }

var ka,t,r,c        : integer;
    min             : real;
    max_r,max_c     :integer;

begin
  dist[0,0]:=0.0;
  for ka:=1 to a[0] do dist[ka,0]:=dist[ka-1,0] + weight[a[ka],0];
  for ka:=1 to b[0] do dist[0,ka]:=dist[0,ka-1] + weight[0,b[ka]];

{ The code in the “t” loop goes through the matrix starting in the upper
left corner } {then filling by moving down and to the left,ending at the
lower right corner.  r is the } {row, c the column.}

  max_r:=a[0];
  max_c:=b[0];
  ka:=max_r + max_c;
  for t:=2 to ka do begin
    r:=1;
    if t-r<max_c then c:=t-r
                 else begin
                        c:=max_c;
                        r:=t-c;
                      end;
    repeat

{ Determine the operation which adds the minimum to the weight at
each point }
      if dist[r-1,c]<dist[r,c-1] then min:=dist[r-1,c]
                                 else min:=dist[r,c-1];
      if dist[r-1,c-1]<=min then min:=dist[r-1,c-1];
      dist[r,c] := min + weight[a[r],b[c]];
      r:=r+1;
      c:=c-1;
    until (c<1) or (r>max_r);
  end;
  Leven_dist := dist[a[0],b[0]];
end; { Leven_dist }

Schrodt (1984, 1985a) reports a feasibility test for using Levenshtein distances to
discriminate between general types of dyadic behavior in 1982 using WEIS-coded events
(McClelland 1976).  Dyads were compared using the distribution of distances from a
sample of randomly chosen sequences each containing ten events.  The weighting scheme
used the fact that two-digit WEIS codes, while technically nominal, are virtually ordinal,
so substitution weights were set to the difference between the WEIS codes.  Thus the
substitution weight of “Force” (WEIS code 22) and “Yield” (WEIS 1) is 21, whereas the
substitution of “Force” and “Expel” (WEIS 20) is 3.  Insertion and deletion weights were
based on the rank order of the frequency of a code: frequent events had low insertion and
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deletion weights; infrequent events had high weights.  While arbitrary and ad hoc, this
scheme produced plausible differentiation between dyads.  For example, the USA/UK
and USA/PRC dyads were measured as showing similar behavior; the USA/UK and
Iran/Iraq dyads as showing very different behavior.

The clear disadvantage of this approach was the arbitrariness of the weights.
Nonetheless, deriving weights for a complex coding scheme on a priori theoretical
grounds would be difficult: for example, what should be the relationship between BCOW
13551 (Reach Economic Agreement) and BCOW 12641 (Assume Foreign Kingship)?
The alternative is induction: weights determined by what one wants to do with the
Levenshtein measure itself.

The algorithm demonstrated here is based on the Widrow-Hoff or “delta rule”
training method used in training neural networks5.  The machine is given BCOW cases in
two categories: war crises and nonwar crises.  The training objective is finding weights
that produce small distances between the sequences within each set, and larger distances
between sequences in different sets.

To create the weights, the distance between each pair of sequences is computed
using the Levenshtein algorithm.  Any weights used in computing the distance between a
pair of like sequences are decreased by a small amount.  Weights used in computing the
distance between unlike sequences are increased by the same amount.  This process is
iterated a number of times.

Using this approach, the weights of operations invoked only in the comparison of
like sequences are reduced; the weights of operations invoked only in the comparison of
unlike sequences are increased; and the weights of operations invoked in comparing both
like and unlike sequences remain about the same, since the increase and decrease cancel
out.  As a consequence, the distances within the groups should decrease, while the
distances between the groups should increase.  The learning has to be done iteratively
since the choice of operations used in computing the Levenshtein distance may change as
the weights change, because the Levenshtein algorithm chooses the operations that have
the smallest weights.

In the experiments described below, the weights were initialized in two different
ways.  In frequency-based initialization, I set the insertion and deletion weights to the
rank-order of the event frequency in the set of all sequences used to train the system.  The
most frequent event had a weight of 1, the second most frequent a weight of 2 and so
forth.  This is consistent with the coding used in Schrodt (1984) and is based on the
information theory argument (Pierce 1980) that frequent events have little discriminating
value and can be replaced with little cost, whereas rare events should have a higher cost6.
The substitution cost was initialized as |ra-rb|, the absolute difference of the ranks of
codes a and b.  Thus it is less costly to replace a frequent event with another frequent
event than it is to replace a frequent event with a less frequent event.

                                                  

5 The original method was discussed in Widrow and Hoff (1960); Rumelhart et al (1986) provide an
extensive discussion of variations in the context of neural networks.

6 No adjustment was made for ties: events tied in frequency were randomly ordered within that tie.  The
frequency of BCOW events generally follows a rank-size law.
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Alternatively, weights were initialized to a constant.  These different initializations
had no effect on the learning algorithm, though the constant weights proved somewhat
less useful for doing discrimination.

The learning scheme produces several peculiarities in terms of the regularities
expected of a “distance” (Sankoff and Kruskal 1983:22)—in fact technically speaking, it
is not a distance in the mathematical sense—but these cause no interpretive problems in
the discrimination test.  First, the metric is completely arbitrary, without a zero point, and
the “distance” may be negative since many weights become less than zero by progressive
subtraction as their operations are repeatedly used in comparing like sequences.  This is
completely consistent with the substantive interpretation of the weights, since it allows
the matching of elements that are important in determining similarity to cancel out
mismatches of less important elements.  Second, the distance between two identical
sequences is not necessarily zero: in fact this tends to be negative because the training
algorithm sets the weights for exact matches to negative values.

Finally, unless the weight matrix is symmetric, the distance between A and B is not
necessarily the same as the distance between B and A.  Because the changes in weights
are done while the sequences are compared, a different weight matrix is used to compare
A to B than comparing B to A during the training.  As a consequence, the weight matrix
is not symmetric.  There are no substantive excuses for this: it is simply a quirk in the
algorithm.  These differences seem to get reinforced in the training—note the
asymmetries in Table 2—though not so badly as to keep the technique from functioning
as intended.

Discriminating War and Nonwar Crises
This system was tested using the BCOW sequences described in the chapter

appendix; the short names of the crises (e.g. pastry) correspond to the BCOW file
identifiers.  The training sequences were used to determine the weights; the system was
tested with the remaining sequences.7  Events within a single day are sorted by code so
that if identical events occur within a single day in two sequences they will be in the
same order in both sequences.

The basic protocol was to run the algorithm on the ten training cases, iterating until
the two groups were separated.  The resulting weight matrix was then applied to the ten
test cases by computing the distance between each test case and the ten training cases.
The expectation was that the nonwar cases would, on average, be closer to the nonwar
cases in the training set, and similarly for the war cases.  The training algorithm showed a
monotonic increase in the separation of two groups.  This increase in separation was
mostly linear with a slight leveling-off that would be expected in a classical learning
curve.

                                                  

7 As noted in the chapter appendix, only the physical events reported in BCOW were used; the sequences
were also filtered to eliminate common events and a prefix was added to the BCOW event code to indicate
which of five types of dyadic relations were involved in the event.
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Table 6.1 gives the results of testing the comparisons with the training cases8.  The
expectation that the Levenshtein distance would discriminate between the war and
nonwar crises is fully met, and the discrimination is almost perfect.  Only one
crisis—Schleswig-Holstein—is not strongly classified into the correct group, though even
this case errs only in being almost as close to the nonwar crises as the nonwar crises are
from each other; it has the expected negative distances to the other war crises.  The war
crises cluster strongly, with large negative distances within the group and large positive
distances between the groups.

Table 6.1.  Distances in Training Set

          rhin 1mor  fash  2mor  bosn  schl  spam  cent  ital  chac
rhine:          330   144   139   311   603  1771  1081  1946  1446
1stmor    190.       -148   189  -275   532  1540  1162  1577  1393
fashod   -288   -77        -177   308   437  1496   754   690   803
2ndm      203   142  -168         351   479  1154   628  1298   972
bosnia    258  -155   307   337         773  -467   662  1493   521
schles    358   432   561   389   540       -2874 -2286 -1301 -1080
spam     1413  1432  1521  1407  -533 -3277       -6399 -5747 -6724
centam   1064  1158   773   613   421 -2371 -6277       -3363 -4641
italet   1903  1781  1586  1648  1594 -1357 -4941 -3145       -3216
chaco:   1184  1154  1028   715   474 -1346 -5076 -3161 -2510

Average within-group distance    =  -1729.4
Average between-group distance   =    987.6
Separation                       =   2717.0

Table 6.2 reports the split-sample test using the difference in distances:

Difference = (Average distance to war crises)  — (Average distance to nonwar crises)

Results for both frequency-based and constant initializations are reported.  As
Table 6.2 indicates, the discrimination using the frequency-based weights is perfect: all of
the war crises in the target set are closer to the war crises in the training set than to the
nonwar crises in the training set; the reverse is true for the nonwar crises.  In terms of the
rank-order of the distances, the same is true when constant initial weights are used but
two of the nonwar crises are actually closer to the war group than to the nonwar group.
Despite this, there is still a good differentiation using constant weights: the closest
nonwar crisis has a distance difference of -821 whereas the furthest war crisis has a
difference of -2932. In this test, frequency based initialization seems to produce a better
discrimination matrix than does constant initialization.

                                                  

8 Table 6.1 was generated with 20 iterations of the training set, constant initial weights set at 10.0, and the
weight increment of 1.1.
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Table 6.2.  Distances in Test Sets

               War distance minus nonwar distance
Crisis   Type       frequency        constant    
palest War -2253 -4494
balkan War -1264 -4189
bangla War -994 -2932
kash1 War -624 -3685
kash2 War -557 -3226
munich Nonwar 21 -708
berair Nonwar 210 291
pastry Nonwar 436 -821
anschl Nonwar 713 316
brtprt Nonwar 1645 552

Table 6.3 shows the event pairs that had the maximum and minimum changes from
the initial values of their substitution weights.9   Neither group is particularly surprising.
The minimum weights, which indicate strong similarity, are usually similar or identical
events, particularly those involving military conflict.  The maximum weights, which
indicate strong dissimilarity, primarily involve substitution of a cooperative action such
as consultation or negotiation for a military action such as “Show of Strength” or “Take
POWs”.  The magnitude of the largest minimum weights is substantially greater—almost
by a factor of ten—than the magnitude of the maximum weights.  The first digit is a dyad
identification code so, for example, the “Mobilization/Mobilization” pair in the maximum
weights is the substitution of “mobilization by an ‘other’ actor against one of the
principals” for “mobilization by one of the principals against the other principal.”
Unsurprisingly, most of the large weights occur in the frequent events, and thousands of
substitution weights were never changed from their initial value.10

                                                  

9 The weights in Tables 6.3 and 6.4 were produced with 51 iterations under the same conditions as Table
6.1.  The reported weights were selected from the set of maximum and minimum substitution weights for
each event rather than from the  maximum and minimum events for the entire table.

10 There were 171 distinct dyad-prefixed event codes in the sequences, so the total size of the matrix,

including the insertion and deletion weights, was 1722, or 29,584.
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Table 6.3.  Minimum and Maximum Weights

Minimum Weights
Code     Meaning                  Code      Meaning               Weight
111633 Military victory 111633 Military victory -687.5
111513 Clash 111633 Military victory -579.6
121143 Change in force 121143 Change in force -446.6
111663 Take POWs 111523 Attack -299.1
111533 Continuous conflict 111533 Continuous conflict -278.3
111523 Attack 111523 Attack -237.6
211131 Military coordin. 112111 Consult -162.7
312521 Reach Agreement 411313 Show of Strength -128.6
111553 No code 512111 Consult -119.8
112111 Consult 112111 Consult -111.1
312213 Violate Territory 111313 Show of Strength -109.9
212521 Reach Agreement 412111 Consult -103.3
211553 No code 111353 Mobilization -103.3
312142 Mediate 111533 Continuous conflict -94.5
112631 Attend Internatnl Event 123151 Change Trade -90.1

                                 Maximum Weights
Code     Meaning                  Code      Meaning                Weight
512111 Consult 111313 Show of Strength 74.9
212521 Reach Agreement 111663 Take POWs 70.5
112121 Negotiate 512111 Consult 69.4
111663 Take POWs 112121 Negotiate 69.4
114113 Subversion 111313 Show of Strength 69.4
112213 Violate Internatnl Law 111313 Show of Strength 68.3
212111 Consult 111633 Military victory 67.2
111353 Mobilization 311353 Mobilization 67.2
312173 Expel Foreign Rep 112213 Violate Internatnl Law 66.1
321133 Change Force Level 512111 Consult 63.9
311313 Show of Strength 512111 Consult 60.6
112521 Reach Agreement 514143 Assassinate 60.6
111443 Military Intrusion 111663 Take POWs 59.5
111523 Attack 112111 Consult 58.4
111513 Clash 112111 Consult 57.3
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Table 6.4 reports the insertion and deletion weights for the most frequent events.
These tend to be symmetric for insertion and deletion, inversely proportional to their rank
orderings and substantially higher than the substitution weights.  This pattern holds
whether frequency-based or constant initial weights are used, and is opposite from the
expectation in information theory that frequent events would have the smallest insertion
and deletion weights.  These high values imply that at some point in the training process,
insertions and deletions were being used frequently—otherwise they would not have the
high values—but their high values relative to the substitution weights would lead one to
expect that eventually the sequence comparisons would be dominated by substitutions.  A
few codes showed negative “eights, usually on the order of 10 to 100, but almost all of
the insertion and deletion weights were positive.

Table 6.4.  Insertion and Deletion Weights

                                     Weights      
Code        Meaning            Delete       Insert
212111 Consult 2608.1 2638.9
312111 Consult 2393.6 2545.4
512111 Consult 1548.8 1951.4
111313 Show of Strength 2208.8 2077.9
111353 Mobilization 1763.3 2124.1
111633 Military victory 2083.4 1675.3
112111 Consult 862.4 652.3
111523 Attack 1180.3 1020.8
311313 Show of Strength 597.3 108.8
112121 Negotiate 731.5 735.9
112521 Reach Agreement 994.4 906.4
111653 Occupation 895.4 914.1
111513 Clash 1298.0 1285.9
212121 Negotiate 789.8 699.6
111663 Take POWs 902.0 412.5

Discrimination between multiple cases
The experiment above discriminated between only two categories, war and no war.

Human decision-makers discriminate between a greater number of categories, so the
obvious question is whether a single Levenshtein matrix can be used to handle multiple
discrimination.

In an early article using the BCOW crisis set, Gochman and Leng (1983) classify
crises into four different categories of bargaining behavior: “fight”, “resistance”,
“standoff” and “prudence”.  There is sufficient overlap between the crises I am analyzing
and the Gochman and Leng set that a simple test can be done of that discrimination.  The
following crises were used:

Fight: balkan (twice), chaco” kash2
Resistance: brtprt, spam, bosnia, italet
Standoff: bangla,  1stmor, fashoda, centam
Prudence: rhine, 2ndmor, schles, kash1
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This is an imperfect test of the Gochman-Leng categories in at least two respects.
First, Gochman and Leng base their characterization on all of the behavior in the crisis,
whereas I am looking only at the physical behavior.  Second, the BCOW files do not
correspond exactly to the crises discussed by Gochman and Leng: chaco contains both
the 1928-29 dispute, which is classified as “fight” and the 1932 dispute, which is
classified as "resistance"; kash2 is a superset of the 1965 Rann of Kutch dispute which is
classified as “fight”.

The algorithm used to handle multiple classifications is identical to that used for the
binary classification: weights are reduced in comparisons of similar cases and increased
for dissimilar cases.  The number of cases in each set have to be identical since otherwise
weights that are used to match sequences within a large set will be “educed simply by
virtue of their being subject to a greater number of opportunities for reduction.  To
equalize the cases in each set, the balkan set was duplicated in the “fight” category; the
unusually short pastry case was eliminated from “standoff”, and the ansch and munich
cases were eliminated from the “prudence” set.

Table 6.5 shows the results of this after 31 iterations.  The Gochman-Leng
categories are generally differentiated, though the results are less than spectacular.  The
"resistance" category appears to be the unusual case: it is the category most distant from
all of the other groups, and is unique among the groups in not having its within-group
distance being less than the between-group distances.  The “standoff” and “prudence”
categories are clearly discriminated from the “fight” and “resistance” categories, which
may reflect the fact that these involve acts of violence that appear as physical events.
Letting the algorithm run for 81 iterations produced virtually no additional changes11: the
distances expanded by an average of 25% but the relative distances between the pairs of
groups remained the same, and the average distance from “resistance” to “standoff” and
“prudence” was still less than the average distance within “resistance”.  These failures
are, perversely, reassuring since they indicate some falsifiability to the method: it is not
capable of differentiating any grouping through pure brute force, even with a very large
number of iterations.

Table 6.5.  Discriminating Multiple Groupings: Average Distance between Crises
by Group

               Fight     Resistance   Standoff   Prudence
Fight 1967.952
Resistance 2708.714 2562.451
Standoff 2158.901 2206.600 1461.201
Prudence 2018.164 2067.513 1490.401 1266.701

This is merely a feasibility test but shows a potential for doing multiple
discrimination of categories of sequences using a single Levenshtein matrix, much as
neural networks are able to do in a single matrix of weights.  The training in a multiple
discrimination case takes considerably longer than that required for a single
                                                  

11 The only exception was that the rank order of the distance of "fight" and "resistance" from "standoff"
reversed.
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discrimination case: 27 iterations are required before the final discrimination pattern
stabilizes; the binary discrimination problem took only about 15 iterations to achieve a
comparable level of separation.

The Levenshtein learning algorithm is clearly only a first step in the larger puzzle
of learning to deal with international events as sequences.  The strength of the approach
lies in its inductive nature.  There are clearly simpler rules for distinguishing BCOW war
and nonwar crises: looking for codes involving military conflict is the most obvious.  But
in order to construct those simpler rules, one must first know that distinguishing
characteristic; in a sense, one must already know the answer.  An inductive learning
algorithm does not need to know the answer; it can find the answer.  The system did not
know, a priori, the importance of the BCOW codes designating military conflict: it
discovered them.  If machine learning systems can discover those distinctions, they may
be capable of discovering things that are not so obvious

If one had a very large set of sequences, it would be useful to find an archetypal
centroid for each category.  Because of the complexity of the computations involved in
determining a Levenshtein distance, this cannot be done analytically, but it probably
could be easily done with a genetic algorithm.  The GA would start with the population
of sequences in a cluster, then evaluate these by their average distance to all of the other
sequences in the cluster.  Recombination—for example of one crises that is typical in its
early phases with another typical in its later phase—and a bit of mutation should work to
produce an archetypal sequence near the center of the cluster.

Parallel Event Sequences12

As noted earlier, one of the problems involved in interpreting a stream of events
such as those found in an event data set or newswire feed is the fact that these events are
the result of multiple, parallel political initiatives.  This section extends earlier work by
Bennett and Schrodt (1987) that used a subset of ”000 WEIS events involving Middle
East states and the North Atlantic major powers to construct common subsequences on
the basis of nondirected dyad pairs (e.g. USA × USSR) using two-digit WEIS codes.
These subsequences were constructed by first scanning the event sequences for the most
common 2-event subsequences, then using a fraction of those to construct 3-event
subsequences, then using a fraction of those to construct 4-event subsequences and so
forth.

The subsequences found by this technique were very successful at covering the
WEIS sequences: as a general benchmark, a set of 10 4-event subsequences could
account for about 35% of the data.  However, these common subsequences were very
repetitive and concentrated heavily on the most common events found in this subset of
WEIS: uses of force, accusations and agreements.   The system discussed here modifies
that earlier work by looking explicitly for event subsequences found in multiple crises
coded in the BCOW data set.  The BCOW data are denser and more varied than the
WEIS data, and filtering is used to eliminate the common events.

The four subsets of the BCOW crises were analyzed; these are listed in Table 7A.2
in the appendix.  The "Threats" set contains crises that did not result in war because one

                                                  

12 Parts of this section appeared earlier in Schrodt 1990a.
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side backed down; the two "War" sets contain crises that involved wars; and the "Mixed"
set contains five nonwar crises and five wars.  Common subsequences within each of
these sets will be determined first, then those subsequences will be used to differentiate
the different categories of crises.

Algorithm
The algorithm used to construct subsequences is a fairly simple search that focuses

first on finding event codes common to as many of the target sequences as possible, then
minimizing the distance between the consecutive events in a subsequence.  When a
subsequence has been determined, it is eliminated from all of the target sequences where
it occurs, then the remaining events in the target sequences are searched for additional
subsequences.  The algorithm is given below in pseudo-code.

Algorithm for Finding Parallel Event Sequences

1. Filter and recode the BCOW sequences (see Appendix)

REPEAT
1. Set the current point in each sequence to th“ beginning;
   set the subsequence to the null string

REPEAT
1.Evaluate each possible event and each sequence and

      select the event E' which:
a. maximizes the number of occurrences in the target

          sequences
b. minimizes the average distance between the current

          point and the next occurrence of the event subject
          to (a).

[Events which have already been eliminated by
          previous subsequences are not counted in the distance.

2.Add E' to the subsequence being constructed
3.If E' is in a sequence, reset the current point  of that  

sequence to the location of E'.
   UNTIL  there is no event which occurs beyond the current
            point in at least a fixed number (3) of the sequences

2. Record the subsequence;

3. With each sequence, eliminate all of the events which have been
   matched by the subsequence.  A subsequence can be applied
   multiple times until less than half of its events occur in the
   sequence

UNTIL size of subsequence is less than or equal to a fixed number
(4)

To allow for the possibility of a non-reported (or non-occurring)’event in an
otherwise complete sequence, the algorithm does not insist on the perfect matching of a
subsequence.  The multiple elimination of subsequences allows subsequence to be
repeated, for example, when a negotiation is broken off and then reinitiated, or two short
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periods of hostilities occur.  The core of the algorithm is the coverage-
maximizing/distance-minimizing search; the remaining idiosyncratic features such as
multiple subsequence elimination provide some additional coverage and change slightly
the resulting subsequences but are not of critical importance.

The algorithm runs quite quickly because it is deterministically constructing
subsequences rather than using a nested (i.e. exponentially expanding) search or using
random experimentation.  It is also quite short, about 500 lines of Pascal.   The number of
event codes common across the target sequences tends to be around “00 in each of the
sets, so the time required to find the subsequences ”s generally a linear function of the
total length of the target sequences.

Results
The subsequences found in each of the four data sets are listed in Table 6.6; Table

6.7 shows an example of how the subsequences nest within the original sequences.  All
subsequences that contained four or more events and were found in at least three of the
target sequences are listed in Table 6.6.13   The table presents both the 6-digit code (dyad
type + 5-digit BCOW event code) and the BCOW description of the event.  Note that in
many cases events with the same BCOW code refer to different dyad types: for example
in subsequence E in the “War2” set there are three “Reach Agreement” events prior to the
“Clash” but these agreements are with “Other” parties, not between the two sides, and
quite likely involve consultation with supporters prior to initiating conflict.  Similarly
many of the frequent “Consult” codes are not consultations between the sides of the
dispute but with others or between others.  A 000000 code in Table 6.7 indicates an event
which occurred only once in the set and had been recoded to zero to save storage.

                                                  

13The three-event subsequences  War1-D and War2-G were found because the algorithm terminated when
it could only find a subsequence less than or equal to 4 events in length, and the two War sets have no 4-
event subsequences.  These are listed in Table 6.6 because they were used when computing the coverage
statistics.
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Table 6.6.  Parallel Subsequences

Threat Data Set

A. 111313   111313  111313  111313   312111  112111  212111
Show of Strength :: Show of Strength :: Show of Strength :: Show of
Strength :: Consult ::Consult :: Consult

B. 212111  312111  111353  121133  311313  212111  312111  212111  112521
312111
Consult :: Consult :: Mobilization :: Change Force Level :: Show of
Strength :: Consult :: Consult :: Consult :: Reach Agreement:: Consult

C. 112121  111333  212121  112111  212521
Negotiate :: Alert :: Negotiate :: Consult :: Reach Agreement

D. 512111  112213  114213  123151  512111
Consult :: Unknown* :: Antiforeign demonstration ::
Change in trade relations :: Consult

E. 212521   312521  111653  112111
 Reach Agreement :: Reach Agreement :: Occupation :: Consult

War1 Data Set

A. 112521  212111  212521  112521  112121  112121  212111
 Reach Agreement :: Consult :: Reach Agreement :: Reach Agreement ::

Negotiate :: Negotiate:: Consult

B. 111353  312111  111523  311313  512111  512111
Mobilization :: Consult :: Attack :: Show of Strength :: Consult ::
Consult

C. 111523  111523  111533  111533  311353
Attack :: Attack :: Continuous Military Conflict :: Continuous Military
Conflict :: Mobilization

D. 212111  511313  512521
Consult :: Show of Strength :: Reach Agreement

War2 Data Set
  
A. 512111  212111  312111  212111  312111  212111  312111  212111  312111

212521 “212111  312111  2”2111  111523  312111
 Consult :: Consult :: Consult :: Consult :: Consult :: Consult :: 

Consult :: Consult :: Consult :: Reach Agreement :: Consult :: Consult ::
Consult :: Attack :: Consult

B. 111333  111313  111533  121133  111633  111513  112213  121143
Alert :: Show of Strength :: Continuous Military Conflict :: Change Force
Level :: Military Victory (partial) :: Clash :: Unknown* :: Change in
Combat Force Level

C. 114123  111523   212111  111513  512111  512111
Discrete Attack :: Attack :: Consult :: Clash :: Consult :: Consult
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Table 6.6. continued.  Parallel Subsequences

D. 112121  112121  112521  114213  311313  311313
Negotiate :: Negotiate :: Reach Agreement :: Antiforeign demonstration ::
Show of Strength :: Show of Strength

E. 212521  312521  312521  111513  111513  111313  111523
Reach Agreement :: Reach Agreement :: Reach Agreement :: Clash :: Clash ::
Show of Strength :: Attack

F. 312111  321111  112111  111633  111533
Consult :: Military Grant :: Consult :: Military Victory (partial) ::
Continuous Military Conflict

G. 512521 111523  111313
Reach Agreement :: Attack :: Show of Strength

Mixed Data Set

A. 112521 311313 111523  212111  212111  312111
Reach Agreement :: Show of Strength  :: Attack :: Consult :: Consult ::
Consult

B. 212111  312111  111313 112121 112111  111313   512111  112121  111353
Consult :: Consult :: Show of Strength :: Negotiate :: Consult ::
Show of Strength :: Consult :: Negotiate :: Mobilization

C. 111353  311313  111663  212111  111533  112521
Mobilization :: Show of Strength :: Take POWs :: Consult :: Continuous
Military Conflict :: Reach Agreement

D. 512111 114213  212521 112213  111653
Consult :: Antiforeign demonstration :: Reach Agreement :: Unknown* ::
Occupation

E. 112121  212121  111513  212121 212521  312521  312111
Negotiate :: Negotiate :: Clash :: Negotiate :: Reach Agreement ::
Reach Agreement :: Consult

F. 111523  412111  312121  111523
Attack :: Consult :: Negotiate :: Attack

*"Unknown" corresponds to code 12213, which is in the data but not the
codebook; it may be "Violate territory", which the codebook states is 12223
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Table 6.7.  Subsequence Positions within Sequences

   pastry  1stmor  fashod  2ndmor  bosnia  brtprt  anschl  rhine   munich
  1:  AAAAAA  EEEEEE  312173  AAAAAA  000000  BBBBBB  000000  321133  41211
  2:  111523  EEEEEE  312173  111443  CCCCCC  AAAAAA  BBBBBB  BBBBBB  BBBBBB
  3:  BBBBBB  000000  112521  000000  112521  114223  BBBBBB  AAAAAA  AAAAAA
  4:  BBBBBB  BBBBBB  000000  CCCCCC  123151  DDDDDD  DDDDDD  412111  41211
  5:  BBBBBB  BBBBBB  132143  CCCCCC  311353  DDDDDD  114213  BBBBBB  121133
  6:  DDDDDD  AAAAAA  111521  EEEEEE  111353  114223  DDDDDD  BBBBBB  AAAAAA
  7:  DDDDDD  212161  332143  BBBBBB  BBBBBB  CCCCCC  114251  AAAAAA  121133
  8:  000000  112631  132143  AAAAAA  AAAAAA  AAAAAA  214251  412521  112111
  9:  111433  AAAAAA  111553  411313  000000  BBBBBB  DDDDDD  000000  111333
 10:  414113  321121  EEEEEE  BBBBBB  123151  114213  212213  AAAAAA  112183
 11:  112161  BBBBBB  EEEEEE  412111  DDDDDD  000000  112161  DDDDDD  AAAAAA
 12:  111433  511313  132143  112121  111353  314“51  11”213  412111  412111
 13:  DDDDDD  “121”1  000000  312213  321121  212213  114251  CCCCCC  121133
 14:  BBBBBB  512121  000000  411313  412521  112631  CCCCCC  BBBBBB  221133
 15:  BBBBBB  BBBBBB  AAAAAA  000000  111353  000000  000000  111443  121133
 16:  000000  AAAAAA  112521  AAAAAA  CCCCCC  314123  112521  112183  112111
 17:  CCCCCC  AAAAAA  112183  CCCCCC  CCCCCC  000000  212111  AAAAAA  114151
 18: “BBBB”B  DDDDDD  332143  312121  312121          312111  BBBBBB  412111
 19:  000000  212161  EEEEEE  AAAAAA  000000          AAAAAA  000000  121133
 20:  111993  512521  AAAAAA  AAAAAA  311353          000000  CCCCCC  114251
 21:  112152  CCCCCC  132143  BBBBBB  EEEEEE          DDDDDD  312521  114223
 22:  112363  AAAAAA  AAAAAA  CCCCCC  EEEEEE          114251  212111  321121
 23:  DDDDDD  000000  BBBBBB  CCCCCC  000000          AAAAAA  312111  412111
 24:  BBBBBB  312631  CCCCCC  312121  111353          221133  AAAAAA  114251
 25:  111521  AAAAAA  AAAAAA  DDDDDD  311313          112121  DDDDDD  412521
 26:  112152  BBBBBB  000000  112121  EEEEEE          DDDDDD  000000  414151
 27:  111521  EEEEEE  BBBBBB  BBBBBB  CCCCCC          DDDDDD  000000  114251
 28:  000000  AAAAAA  DDDDDD  AAAAAA  EEEEEE          DDDDDD  212111  DDDDDD
 29:  AAAAAA  BBBBBB  111553  BBBBBB  312121          212111  312111  AAAAAA
 30:  BBBBBB  CCCCCC  AAAAAA  311333  211313          312111  000000  BB“BBB
 31:  11”173  000000  112173  000000  AAAAAA          AAAAAA  512111  412111
 32:  414113  000000  111353  AAAAAA  114151          BBBBBB  212111  121133
 33:  000000  112631          112121  AAAAAA          112183  312111  DDDDDD
 34:  112173  BBBBBB          BBBBBB  BBBBBB          000000  212111  112111
 35:  AAAAAA  BBBBBB          111993  412111          000000  312111  414151
 36:  AAAAAA  512213          000000  511313          CCCCCC  212111  114251
 37:  111443  BBBBBB          112213  211313          112161  312111  AAAAAA
 38:  AAAAAA  BBBBBB          BBBBBB  BBBBBB          000000  212111  BBBBBB
 39:  AAAAAA  321133                  BBBBBB          114251  312111  BBBBBB
 40:  000000  312631                  312161          EEEEEE  512111  111333
 41:  111523  CCCCCC                  000000          311333  512111  BBBBBB
 42:  EEEEEE  BBBBBB                  CCCCCC                  000000  111353
 43:  111521  BBBBBB                  112521                  212111  000000
 44:  000000  112631                  212111                  512111  000000
 45:  112161  DDDDDD                  312111                  312111  121133
 46:  112363  000000                  CCCCCC                  512111  112111
 47:          212161                  211313                  BBBBBB  114251
 48:          112111                  321133                  211353  112111
 49:          BBBBBB                  211313                  000000  114151
 50:          BBBBBB                  212111                  212111  412111
      pastry  1stmor  fashod  2ndmor  bosnia  brtprt  anschl  rhine   munich
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The subsequences generally speak for themselves: they are plausible and they are
clearly capturing more than random event frequencies.  There are clear differences, for
example, between the "Threat" subsequences and the two sets of "War" subsequences.
Similarly, there are also clear differences between the pre-WWI and post-WWI war
subsequences: the extensive communication and negotiation that accompany modern
wars is evident in subsequences A and D.

What is surprising—though consistent with the underlying theory—is that many of
the subsequences have a degree of internal consistency.  For example, in "War1",
subsequence A deals largely with consultation and reaching agreements between the
sides; subsequence C is primarily military activity; in War2 subsequence A is extensive
international consultation, subsequence B is the main sequence of military action, and
subsequence E is international agreements followed by initial hostilities.  The only
feature within the algorithm that might bias the selection of the subsequences to showing
this internal consistency was the sorting of event codes within days, but that process
seems unlikely to fully account for the consistency because the sorted codes were the
frequency-recoded dyad-prefixed integers, not the original BCOW codes, and sorting
applied only to multiple events in a single day.  Beyond that, the internal consistency
exhibited by the subsequences is purely a product of the data and is evidence that we are
actually seeing repeated patterns of events.  The plausibility of the subsequences is not
perfect—in particular the "Mobilization" event occurs at some rather odd places—but is
still striking considering the subsequences were produced by a machine with no
preconceived biases for which events should be associated together.

Degree of Fit

Table 6.8 reports the degree of fit, or coverage, of each of the sequences by the set
of subsequences.  The measure reported is

Fit = 
number of events matched by subsequences

L
 

where L = minimum(length of sequence, total length of subsequences).  A fit
greater than one indicates that some target sequences were matched multiple times by the
subsequences.
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Table 6.8.  Measures of Fit by Sequence

Threat
pastry  1stmor  fashod  2ndmor  bosnia  brtprt  anschl  rhine  munich
0.6452  1.5161  0.3871  0.6774  1.4839  0.4118  0.5161  0.8710 1.3226

Total coverage  =   0.428
Random coverage =   0.336

War1
schles  rustrk  spam    centam  balkan  chaco  
0.8095  2.6190  1.3333  0.7619  1.4762  1.9048

Total coverage  =   0.204
Random coverage =   0.177

War2
italet  kash1   suez    sixday  bangla  kash2   palest
1.9200  0.5800  1.1600  1.1400  1.1200  1.1000  1.7600
Total coverage  =   0.368
Random coverage =   0.361

Mixed
pastry  1stmor  fashod  2ndmor  bosnia  schles  spam   centam  balkan  chaco   
0.5676  0.7568  0.3125  0.4865  1.4324  0.5676  1.3514  0.4595  1.1892  1.2973
Total coverage  =   0.351
Random coverage =   0.272

The Total Coverage measure is the total number of events matched in the data set
divided by the total length of the data set.  Except for the “War1” set (20%), this figure is
in the 35% - 40% range.  This is consistent with the WEIS results in Bennett and Schrodt
(1987)—which had around 35% coverage—despite the use of a completely different data
set and a somewhat different sequence construction method.  As in the earlier research,
the total length of the subsequences is substantially less than the total length of the target
sequences, so the subsequences provide a substantial reduction in the amount of
information required to describe the target sequences.

As always, it is useful to gauge the extent to which these results are accounted for
by pattern rather than chance.  The “null model” for event sequences is less obvious than
that found in parametric statistics and one could suggest at least four different null
models, of decreasing randomness.  In each case, a set of null sequences of the same
length as the observed sequences would be constructed; the difference is how the
probability of an event occurring in a sequence would be determined:

1. Equal probability

2. Probability equal to the probability of the event occurring in BCOW

3. Probability equal to the probability of the event occurring in the set of sequences

4. Probability equal to the probability of the event occurring in each sequence
within the set
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These models include progressively more information about the characteristics of
the sequences being studied.  The strongest test is criterion [4]: it can be simulated by
simply shuffling the events in a sequence and applying the subsequences to the shuffled
sequences.  The total coverage of the shuffled sequences is reported as “Random
Coverage” in Table 6.8.  The subsequences cover about 30% more of the actual
sequences than the random sequences in the “Threat” and “Mixed” sets, but provide only
15% additional coverage in “War1” and almost no additional coverage in “War2”.  This
last result was surprising and indicates that most of the regularity in “War2” is accounted
for by the marginal frequencies of the events rather than the sequencing of events.  The
“War2” sequences tend to be longer and show a higher amount of repetition (particularly
international consultations and agreements) than the other sets, which may account for
the difference.

I also did some partial tests of the algorithm against random sequences created
from “Threat” and “Mixed” according to criterion [3]—which is equivalent to shuffling
events between sequences in a data set as well as within the sequences—and contrary to
initial expectations found the random coverage to be somewhat greater than the criterion
[4] random sequences—0.352 and 0.349 respectively.  This may occur because the
algorithm finds subsequences that are common to the target sequences and the random
sequences produced by shuffling the entire set creates a uniform environment for
detecting subsequences.

Using Subsequences to Discriminate Nonwar and War Crises
If common subsequences reflect complex but deliberately planned political

activities, one would expect different types of crises to be characterized by different
subsequences.  If those subsequences are sufficiently distinct, they could then be used to
discriminate between crisis types.  Using a nearest neighbor approach, one can
characterize each target sequence by a vector giving the fit of each of the subsequences to
the target sequence; these fit vectors locate each target sequence in an N-dimensional
space, where N is the number of subsequences.  Ideally, sequences that have
characteristics in common will cluster in this space.

Table 6.9 gives fit of the ten sequences in the “Mixed” data set to the six
subsequences of that set.  Fit in this table is measured as

Fit = 
number events matched - number events not matched

total length of the subsequence
 

The columns give the vector corresponding to each of the sequences in the set.  The
second half of Table 6.9 reports one measure of the distance between sequences: the
Pearson product moment (r) of the two vectors.  Sequences that have similar fits would
be expected to have a high r; dissimilar sequences a low r.  This expectation is borne out
in general in Table 6.9, though the results are less than spectacular.
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Table 6.9.  Comparing Sequences by Fit to Subsequences

Subsequence fit for each sequence in Mixed

     past   1stm   fash   2ndm   bosn   schl   spam   cent   balk   chac
A    0.00  -0.33  -0.33  -0.66   1.00   0.00   0.00  -0.33   1.33   1.33
B    0.00   0.44  -0.11   0.00   1.22  -0.33   0.77  -0.33   0.33   1.00
C    0.00  -0.33  -0.66  -0.33  -0.33   1.00   1.33  -0.33  -0.33   0.00
D   -0.40  -0.20  -0.20  -0.60  -0.40  -0.20   0.80  -0.40   0.00  -0.20
E   -0.71   0.28  -0.71  -0.14   0.28  -0.42  -0.71  -0.71   0.00   0.00
F   -0.50  -1.00  -1.00   0.00   0.00   0.00   1.00   0.00   0.00   0.00

Correlations between sequence fits

          past   1stm   fash   2ndm   bosn   schl   spam   cent   balk
pastry    1.00
1stmor    0.08   1.00
fashod    0.51   0.62   1.00
2ndmor   -0.27   0.11  -0.42   1.00
bosnia    0.40   0.47   0.45   0.16   1.00
schles    0.49  -0.43  -0.30  -0.19  -0.45   1.00
spam      0.47  -0.44  -0.01   0.10  -0.38   0.62   1.00
centam    0.28  -0.77  -0.27   0.18  -0.06   0.30   0.72   1.00
balkan    0.39   0.04   0.41  -0.46   0.73  -0.30  -0.41   0.04   1.00
chaco     0.65   0.27   0.51  -0.16   0.92  -0.18  -0.21   0.07   0.87

Figure 6.3 uses correspondence analysis to cluster the sequences.14    All of the five
wars (filled dots) cluster in the center of the graph, with the nonwar crises on the
periphery.  In the attribute space (not shown), the two subsequences most strongly
associated with the wars are A and F, which also are the only two subsequences
containing “Attack” events.  The visual examination of the subsequences in each data set
also indicates that the threat subsequences and the war subsequences are quite dissimilar,
and one would not expect the threat sequences to fit the war subsequences nearly as well
as they fit their own subsequences.15

Table 6.9 and Figure 6.3 are a weak test because the subsequences were chosen on
the basis of their ability to describe rather than differentiate.  It would not be difficult to
design a similar algorithm to explicitly search for differentiating sequences, for example
modifying the selection criterion in the subsequencing algorithm to maximize the
coverage in one set of case while minimizing coverage in the other set.  To construct a
war-identifying subsequence the algorithm would choose, at each stage in assembling a
subsequence, the event that occurs in the greatest number of war sequences and smallest
number of nonwar sequences using a weighting between such as (# war) minus (#
nonwar).  This could be extended to the prediction problem—that is, recognizing the

                                                  

14 Figure 6.3 was produced without subsequence C., whose inclusion distorted the clustering in the two-
dimensional map.

15 A quirk in the recoding of sequences precluded a direct test of this without a disproportional amount of
effort...



Sequence Analysis 207

“warning signs” that a crisis will result in a war without knowing the entire crisis—by
using as training examples the initial phase of the crisis rather than the entire crisis.   

Figure 6.3.  Correspondence Map of War and Nonwar Crises

Grammars and Syntactic Pattern Recognition
The two methods demonstrated here are only first attempts at dealing with the

problem of sequence recognition, and they are relatively simple, relying largely on a
linear structuring of the sequences.  A more sophisticated approach would be to impose a
grammatical structure on the sequences; this would provide a more flexible specification
and there are several reasons to think it might work.  The basic modeling approach would
be similar to that of the syntactic pattern recognition literature, which is discussed in
detail in Fu (1974, 1982)

…[In the syntactic approach] patterns are specified as being built up out of
subpatterns in various ways of composition, just as phrases and sentences are built
up by concatenating words, and words are built up by concatenating characters. …
The rules governing the composition of primitives into patterns are usually
specified by the so-called grammar of the pattern description language.  After each
primitive within the pattern is identified, the recognition process is accomplished
by performing a syntax analysis … to determine whether or not it is syntactically
correct with respect to the specified grammar. (Fu 1974: 1)

Fu further notes “one of the most attractive aspects is the recursive mature of a grammar.
A grammar rule can be applied any number of times, so it is possible to express in a very
compact way some basic structural characteristics of an infinite set of sentences.”  In this
respect, a grammar is functionally similar to a differential equation, which specifies the
basic mechanisms of a process while still providing flexibility in the choice of parameters
and initial values.  The concept of an event grammar is by now fairly common: a useful
survey of various “story grammar” concepts is found in Alker (1987).
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Two recent studies have demonstrated the potential for this technique.  Based on an
extensive study of documents of US decision-making during the Korean War, Milliken
(1994) constructs a sophisticated formal grammar of state action that can be used to
characterize complex political episodes.  Working in the domain of institutions rather
than actions, Crawford and Ostrom (1995) develop a formal grammar of rules.  Both of
these projects find that a variety of political behaviors can be systematically modeled
using a relatively small lexicon—in the case of Milliken, roughly the size of the BCOW
coding scheme—and a set of grammatical structures.

Partially-ordered sequences are a simple form of event grammar in the sense that
they can be used to generate a set of well-formed sequences.  International politics
involves a large number of behaviors, but those behaviors are by no means infinite.  The
possible set of responses to events is further  constrained by resource availability,
institutional operating procedures, and custom.  As noted in Chapter 3, the predictability
of the international environment is necessary for the system to function: if each event
could evoke a full range of possible responses, from war to surrender, international
affairs would grind to a halt amid chaos.

The common metaphor “the language of diplomacy” may also be accurate as
description.  Foreign policies can transmit meaning through actions as well as words, and
those actions may assume a quasi-linguistic structure dependent upon a sequence of
events rather than any single event.  Because the explicit content of those events can
vary—the USA/PRC ping pong match obviously involved more than young athletes
furiously bouncing white balls across a table—the meaning of a sequence must lie to
some extent in its structure.  If this structure of action can be understood across time,
cultures and policy substitutions, it probably has at least a rudimentary grammar.16  This
is not to say the grammar will be precise and unvarying, nor will it apply to all events that
occur in the system: the diplomatic grammar of Kissinger differs from that of Khomeini
just as the English grammar of William Safire differs from that of Langston Hughes or
James Joyce.  But most events most of the time can be expected to follow some sort of
order.  Behavior that deviates significantly from the expected order signals that one is
dealing either with an unusual situation or with someone who doesn’t know (or won’t
follow) the rules.

Grammars are difficult to induce using machine learning methods, but, as I will
suggest in Chapter 7, very large amounts of machine-readable text describing political
events are now available and it might be possible to adapt some of the newer
computational linguistic methods to work on the development of political grammars.  The
specification of some low-level rules and the selection of regular sequences might be

                                                  

16 This parallel between language and action may extend further: If we assume, following Chomsky, that
human linguistic abilities are at least partially genetic, then the interpretation of complex social behavior
could also have a genetic component.  Social interaction in most vertebrates is highly stylized and involves
the communication of specific signals (i.e. "Get out of my territory", "Let's mate", "Something dangerous is
coming") to invoke specific responses.  These actions are frequently quite complex—particularly those
involving fighting and mating—and can be at least partially described syntactically.  The cognitive ability
to interpret physical actions having social significance preceded the ability to process language in
evolution, and linguistic abilities may have been adapted from the mental hardware used to interpret
physical activity.  While organizations are not under the same cognitive constraints as individuals in this
respect, there may still be similarities.
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sufficient to bring the problem of constructing these into the range of machine-
learning—or at least machine-assisted—systems.
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Appendix
The Behavioral Correlates of War data set (BCOW; Leng 1987) focuses on a

limited number of historical crises using a variety of historical sources, so it has a higher
events density than WEIS or COPDAB.  The BCOW coding scheme is similar to that in
WEIS but more detailed and arguably more precise because it is optimized to code the
events that occur in international crises.  While BCOW codes both physical and verbal
activity, I analyzed only the physical actions on the assumption that these would be more
regular than verbal actions over time and across cultures.  The focus on physical actions
considerably shortens the sequences: this was important due to memory constraints and
because the number of operations required to compute a Levenshtein distance is
proportional to the product of the length of the two sequences.

Recoding
I used the 5-digit event code in columns 25-29 of a BCOW physical action record,

then added a prefix indicating which of five types of dyadic relations were involved in
the event, based on BCOW’s identification of the “sides” of a conflict.  Denoting
BCOW’s “Side A” and “Side B” as the principal actors in the conflict, and all other
actors as “others”, the five prefixes are:

1 Interaction between principals

2 Principal as initiator, other as target

3 Other as initiator, principal as target

4 Interaction within principals (e.g. between actors on same side)

5 Interaction between others

For example:

112111 = Diplomatic consultation between Side A and Side B

312111 = Diplomatic consultation initiated by an “other” and directed to either Side
A or Side B

Events that occur only once in a set of data—and as such cannot be part of a
subsequence common to two or more crises—were recoded to zero to save space; these
zeroed events are not used in determining subsequences.  Events within a single day are
sorted by code so that if identical events occur within a single day in two sequences they
will be in the same order in both sequences.

In the parallel event sequence test, I experimented briefly with using nine codes
that distinguished between Side A and Side B; this produced no unusual results.  Side-
specific codes are ambiguous since there is no firmly predetermined identity to “Side A”
and “Side B”—though BCOW tends to code the victor of a dispute as Side A—and the
combinatorics involved in ascertaining whether better subsequences would be found if
the identities of Side A and Side B were reversed in some sequences seemed more
trouble than was justified.
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Filtering
A persistent problem encountered in Bennett and Schrodt (1987) was that common

events—consultations, accusations and, in the case of war, acts of violence—constitute a
large part of the data.  Common events provide a great deal of regularity—for example
much of the WEIS subset Bennett and Schrodt examined was taken up with 12-12-12-12-
12 (Accuse) and 22-22-22-22-22 (Force)—but they contribute little to understanding.

From an information theory standpoint, these high frequency event are noise.  They
can be eliminated without loss of information about the underlying sequence because
they are occurring with a much higher frequency than the frequency of the underlying
signal.  The ongoing shouting matches and wars in WEIS (and their BCOW equivalents)
mask the slower, more significant processes of military escalation or diplomatic
rapprochement; they are the event data equivalent of the static from a lightening storm
intruding on a radio broadcast of the “Toccata and Fugue in D”.  One needs, therefore, to
apply a high-frequency filter to get rid of the junk in the event stream before looking for
the lower-frequency regularities.

The sequences were filtered on the basis of novelty: An event of a particular code
was included in the filtered sequence only if it had not occurred in the previous N days,
where N is an empirically determined parameter.  Novelty filtering has some face
validity: To a human analyst, the onset of hostilities is important, but after that point, the
day-to-day continuation of hostility provides little new information.  Since BCOW codes
distinguish the cessation of action more clearly than do WEIS codes, the end of a conflict
or negotiation will usually be demarcated by the occurrence of a new code, which will
pass through the novelty filter.

The novelty filter also deals automatically with the “nonevent” problem—the issue
of whether the absence of activity between two actors should be coded.  The resumption
of an activity after a period of inaction will cause the appearance of an event code;
continual activity will not.  Finally, novelty filtering insures that each event found in the
original data will occur at least once in the filtered event sequence.

Experiments with three BCOW data sets—fashoda, suez and cyprus—showed a
clear leveling off in the size of the sequences at a filter length of about 14 to 16 days.17

Filtering usually resulted in a file containing 40% to 60% of the original events; this was
higher in short sequences (e.g. pastry, 76%) and lower in very long sequences (e.g. suez,
29%).  Parallel subsequence experiments using data processed with only a three-day filter
produced no unexpected differences in the results: the shared subsequences tended to be
dominated by the high frequency events and the total coverage was higher.

Levenshtein Metric Test
The four subsets of crises listed in Table 6A.1 were analyzed.  The short names

(e.g. “pastry”) correspond to the BCOW file identifiers.  “Training” sequences were used
to establish weights that discriminated between the war and nonwar sequences; the
system was validated with the remaining sequences.  The BCOW crises not included in
the study are generally those whose length in events is very long (e.g. Suez or the Cuban

                                                  

17 The 14-day frequency limit, determined empirically for the BCOW data, turned out to be the same
"nonevent" time period as determined by guess and intuition in Bennett and Schrodt (1987).
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Missile Crisis); or those I could not easily classify into war or nonwar (e.g. Trieste).  No
deliberate attempt was made to manipulate the results by choice of crises except that the
training cases were representative of the validation cases.

Parallel Event Sequences Test
This study used  four subsets listed in Table 6A.2.  The “Threats” set contains

crises that did not result in war because one side backed down; the two “War” sets
contain crises that involved wars; and the “Mixed” set included five nonwar crises and
five wars.  The BCOW crises not analyzed are those directly preceding the two world
wars and a set of largely post-WWII crisis that involve some military activity but do not
escalate to a full-scale war (e.g. the Berlin airlift).

Table 6A.1.  Data Sets Analyzed in Levenshtein Metric Test

                            Crises without war

                               Training Set
BCOW file  Crisis                            Date          Length*
fashod Fashoda Crisis 1898-1899 32
1stmor First Moroccan Crisis 1904-1906 79
bosnia Bosnian Crisis 1908-1909 116
2ndmor Second Moroccan Crisis (Agadir) 1911 38
rhine Rhineland Crisis 1936 65

                                  Test Set
pastry Pastry War Crisis 1838-1839 41
brtprt British-Portuguese Crisis 1889-1890 15
anschl Anschluss Crisis 1937-1938 37
munich Munich Crisis 1938 114
berair Berlin Blockade 1948-1949 118

                         Crises involving war

                             Training Set
BCOW file  Crisis                            Date          Length*
schles Schleswig-Holstein War 1863-1864 52
spam Spanish-American War 1897-1898 171
centam Second Central American War 1906-1907 71
chaco Chaco Dispute and War 1927-1930 125
italet Italo-Ethiopian War 1935-1936 260

                                Test Set
balkan Balkan Wars 1912-1913 115
palest Palestine War 1947-1948 177
kash1 First Kashmir War 1947-1949 70
kash2 Second Kashmir War 1964-1966 76
bangla Bangladesh War 1971 108
*Length = number of events in the filtered sequence
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Table 6.A2.  Crises Analyzed in Parallel Event Sequence Test

THREATS: Crises without war
pastry Pastry War Crisis 1838-1839
brtprt British-Portuguese Crisis 1889-1890
fashod Fashoda Crisis 1898-1899
1stmor First Moroccan Crisis 1904-1906
bosnia Bosnian Crisis 1908-1909
2ndmor Second Moroccan Crisis (Agadir) 1911
rhine Rhineland Crisis 1936
anschl Anschluss Crisis 1937-1938
munich Munich Crisis 1938

WAR1: Pre-WWI conflicts
schles Schleswig-Holstein War 1863-1864
rustrk Russo-Turkish War 1877-1878
spam Spanish-American War 1897-1898
centam Second Central American War 1906-1907
balkan Balkan Wars 1912-1913
chaco Chaco Dispute and War 1927-1930

WAR2: Post-WWI conflicts
italet Italo-Ethiopian War 1935-1936
palest Palestine War 1947-1948
kash1 First Kashmir War 1947-1949
suez Suez Crisis and Sinai War 1956-1957
kash2 Second Kashmir War 1964-1966
sixday 1967 Middle East War 1967
bangla Bangladesh War 1971

MIX: Mixture of threat and conflict cases
pastry, 1stmor, fashoda, 2ndmor, bosnia,
schles, spam, centam, balkan, chaco





Chapter 7
Conclusion

[I hope] at least computers might one day attain the level of the little wormlike
nematode Caenorhabditis elegans.  Blessed with only 302 nerve cells, this lowly
creature is truly elegant compared to a Cray [supercomputer], able not only to
adjust its squirming to suit its needs, but to learn to recognize patterns and avoid
obstacles and even dangers.

Erik Sanberg Diment

But then with the throttle screwed on there is only the barest margin, and no room
at all for mistakes.  It has to be done right, and that's when the strange music
starts, when you stretch your luck so far that fear becomes exhilaration and
vibrates along your arms.  The Edge…  There is no honest way to explain it
because the people who really know where it is are those who have gone over.  The
others pushed their control as far as they felt they could handle it, and then pulled
back, or slowed down, or did whatever they had to do when it came time to choose
between Now and Later.

But the Edge is still out there.
Hunter S. Thompson

This final chapter wraps up several topics that apply generally to computational
modeling. Some of these might have just as appropriately gone into Chapters 2 or 3 but
were reserved to this point so that the reader would have concrete examples of
computational models against which to assess the arguments. I will first consider the
parallels between computational modeling and classical approaches to studying
international behavior; I argue that in several respects computational models are closer to
the classical methods than are other formal modeling methods. Next, I look at what
computational models are not, and defend the inductive approach characteristic of these
models.  I then consider some of the implications for computational modeling of the rapid
changes in the availability of computing hardware, software and data. Finally, I suggest
some directions that computational modeling efforts might usefully take in the near
future.

Computational Modeling and the Classical Approach
This book has made extensive reference to the "classical" or "traditional" approach

to international relations.1 Gaddis (1992/93) provides a thorough discussion of the
failures of both the scientific and traditional analytical techniques to predict the end of the
Cold War. While Gaddis, an historian, suggests that behavioralists need to pay more
attention to history and less to the models of the physical sciences, he also notes that the

                                                  
1I have assumed that the reader knows what this refers to: if not, see Dougherty and Pfaltzgraff 1981 or,
more briefly, Bull 1966.
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traditional analysts did no better on this problem than the behavioralists.2 In another
context, Khong (1992,257) notes of the advisors who produced the disastrous United
States policy in Vietnam: “Critics who lament that the policy-makers knew too little
history might ponder if a more distinguished and knowledgeable group of officials has
since been assembled by any president.” Formal modeling has its problems, but so do
historical and traditional approaches.

The failure to predict the end of the Cold War should—though probably
won't—spawn a search for new methods, just as the Great Depression revolutionized
macroeconomic theory and analytical techniques in the social and policy sciences
generally. One interesting aspect of computational modeling are the parallels it has with
the classical approach; in fact a number of the suggestions made by Gaddis for improving
formal efforts are already found in computational models.

Small N, large M analysis

Statistical studies tend to look at a small number of variables (M) on a large
numbers of cases (N), while traditional studies look in detail at a large number of
characteristics in a small number of cases. While some computational models (e.g. ID3,
neural networks) are most effective in a large-N/small-M environment, the opposite
approach can also be found. Rule-based models such as JESSE or POLI follow a strategy
quite similar to that of the classical case study in analyzing a single case in great detail;
they differ from the classical approach in doing this formally. In addition, many
computational methods are designed to be knowledge-intensive and can thus
accommodate a much larger number of variables than the typical statistical analysis.3

Use of precedent and analogy.

One of the emphases throughout this volume has been the use of precedent and
analogy.  As noted in Chapter 3, this has extensive parallels in traditional international
relations theory. In general, the tacit model in most traditional arguments is some
variation on "If X happened in the past under conditions C1, C2, ..., Cn, then if conditions

                                                  
2 Gaddis may also be overestimating the influence that behavioralist methods have had on policy-making
and forecasting.  Laurance (1990) documents the failures of the event data approach in this regard; O'Neill
(1994) does the same for game theory; Cooper (1978) for simulation; Herspring (1992) for behavioralist
approaches generally.  The behavioralist enterprise has paid little attention to problems relevant to foreign
policy in part because no one was listening, particularly compared to the influence of the "slow journalism"
approach.  In this sense behavioralism has not failed as a policy tool so much as it has never been seriously
attempted.
3The prospect of "data mining" for relationships in large data bases has attracted considerable interest in
recent years.  For example, a recent medical study on the blood cholesterol/heart disease linkage involved a
database of about 1400 variables on over 800 patients followed for 7 to 14 years.  The resulting dataset was
300-megabytes in size and, in classic scientific understatement, "the large number of variables as well as
the complex relationships between them are the real challenges of the project." (Long et al 1989; also see
the Piatetsky-Shapiro and Frawley 1989; Fayyad et al 1995 and Byte October 1995, 81-108).  While this
approach is anathema to the usual standards of experimental design (e.g. King, Keohane and Verba 1994) it
can be justified as exploratory data analysis.  If the researcher doesn't have a clue about what combinations
of lifestyle factors might affect the cholesterol/heart disease relationship, systematic methods of finding

these relationships in a large number of variables are more useful than trying to work through 21400

subsets of those variables.
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similar to C1,C2,...,Cn occur again, X is likely to happen again".  The most common

evidence provided for any argument in international politics in an historical example, and
most international relations theories are richly illustrated with historical instantiations of
their principles.

Flexible assumptions about cognition.

Traditional theories of international behavior usually assume a cognitive process is
involved.4 In some of these theories—most notably realism—self-interest is assumed to
be the dominant process, but other theories (e.g. Jervis, Allison, Lebow) invoke complex
psychological and organizational decision-making mechanisms. Computational
techniques provide a variety of methods for modeling information processing and
learning in individuals and organizations; in particular, these are much richer than the
cognitive assumptions found in rational choice modeling.

The sentient organization as primary actor.

With the exception of the "Great Man" approach, most traditional theories
recognize the importance of organizations in determining behavior. While the set of
organizations within a "nation-state" may be treated as a unitary actor with respect to
some questions (e.g. in the simpler aspects of balance of power theory), few traditional
theories go very far without delving into the decision-making of Foreign Offices, military
bureaucracies, executives, business organizations, social classes, political parties and
other collective entities.  Rule-based models can, and have, modeled organizational
decision-making in considerable detail; extensions of neural network models may be able
to differentiate between situations where the organizational structure is robust and those
where it is brittle.

While there remain major differences between the traditional and formal
approaches—particularly with respect to the preparation required to understand them—I
think these are often differences in language (natural versus formal) and technique rather
than differences in objective. Clearly both approaches are empirical, seeking to study the
real world rather than creating abstract mathematical or philosophical structures.  Each
approach contains communities who seek to be policy relevant, and this means they must
be able to make predictions. Both approaches simplify historical experience into a few
principles of behavior. When focused on the issue of what to study rather than how to
study it, both approaches have reasonably similar definitions of what constitutes
international behavior and what constitutes an interesting problem (e.g. international
conflict, international economic inequality), particularly

One can imagine a situation where classical techniques coexisted with a fully
developed formal theory of international relations (which we currently do not have),
much as engineering coexists with physics, management coexists with formal economics,
and clinical medicine coexists with statistical epidemiology. At the moment, however,
many formal theories of international politics show considerably greater divergence from
informal theory than physics does from engineering. Given the somewhat dubious

                                                  
4 A few theories of historical determinism—Toynbee, some variants of Marxism, and some theories
invoking Social Darwinism—are about the only exceptions.
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pedigree of many formal models of international behavior—born as they are from
physics, economics and mathematical convenience—more attention to the characteristics
of the classical approach might be useful.

Some problems will always exist that require a rapid solution formal methods
cannot provide. Just as a physicist in a skidding car does not pause to work out the
Newtonian mechanics of the situation, so a diplomat in an unforeseen crisis can hardly be
expected to use regression analysis or develop a rule-based model.  But formal methods
retain an advantage in mapping the broader regularities of behavior.  Formal techniques
are superior to natural language in preserving logical consistency in a complex argument,
and a computer can dispassionately process vast quantities of information that are
impossible for a human brain to handle.  There is a place for both approaches.

What Computational Models Can't Do
The world is a stupendous machine, composed of innumerable parts, each of which
being a free agent has a volition and action of its own, and on this ground arises
the difficulty of assuring success in any enterprise depending on the volition of
numerous agents.  We may set the machine in motion, and dispose every wheel to
one certain end, but when it depends on the volition of any one wheel, and the
corresponding action of every wheel, the result is uncertain.

Niccolò Machiavelli

The discussion throughout this volume has generally looked at glasses half-full and
the silver linings of dark clouds, if not flying pigs.  Facing the dark side for a moment, it
is useful to look at some things that computational models cannot do, however
sophisticated they may be, with however large an historical data base, and implemented
on whatever hardware. This is my guide to where the dead ends of computational
modeling are located.

A computational model is not a model of the brain!
Table 7.1 compares the characteristics of the hardware used in computational

modeling and that used for human political decision-making.  Not only is the basic
architecture different, but also the two differ by at least five orders of magnitude in their
storage capacity.  While it may be possible in the future for computer hardware to get
closer to that of the brain—for example with increased speed, memory and parallel
architectures—at the moment we are not anywhere close.
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Table 7.1.  Computers versus Brains

microprocessor brain
      (ca.1995)

Data element byte (0..255) neuron (binary state)
neural connection

(continuous state)

number of elements 107 1011

number of connections 107 - 108 1015 (?)

connections per element 1 - 10 104 - 105

mode of operation serial parallel

Firing time (seconds) 10-8 (10 nanosecs) 5* 10-3 (5 millisecs)

Reaction time for identifying a 102  - 103 seconds 5* 10-1  secs (1/2-sec)
complex pattern using a large
knowledge base

Mode of recall Serial by location Associative by content

As will be discussed below, improvements in computer hardware will have
profound implications for the ease with which one can experiment with computational
techniques but over the past decade these improvements have been only about two orders
of magnitude.  We've still got at least four to eight more orders of magnitude separating
the computer from the brain.

As noted throughout this volume, these computational constraints are much less
when one is dealing with organizational behavior. Judging from employment trends,
microprocessors began to seriously compete as components of the middle layers of
organizations around 1988, with the introduction of the Intel 80386 and Motorola 68030.
But computers still can't match the individual brain, particularly in tasks involving recall.
Computational models, while guided by human cognitive activity, must still be developed
with the information processing limitations of computers.

Understanding political theory
A theory of political behavior that makes sense to a human being will not

necessarily make sense to a machine.  The term "makes sense" is here defined as a theory
that can be transmitted and understood by another human and used to predict and/or
guide behavior.  Humans have been able to construct such theories for at least 2,500
years: We still read Thucydides and Mencius, and every year thousands of
undergraduates apply the theories of Thucydides and Mencius to contemporary politics in
essays and term papers, not to mention applying the theories of Cicero, Augustine, Ibn-
Khaldun, Machiavelli, Hobbes, Rousseau, Marx, and Keynes.  Presumably these theories
have some empirical validity—we accord them a place in the curriculum distinct from
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that accorded to Lord of the Rings or Peter Pan—and this validity transcends time,
language, culture and technology, no small feat.5

This does not, however, imply that those same theories will be sensible to a
machine, in the sense that a machine can be expected to be able to assimilate, extend and
make predictions on the basis of the theories.  Any 20th century reader of Thucydides
has, by virtue of that act, already experienced large scale social organization, gone
through a period of social and personal discipline required to become literate, has gone
through a long period of human intellectual, social and emotional development, and due
to the associative capacity of the human brain, uses this information while
"understanding" Thucydides.  Thucydides makes sense to a modern reader because that
reader, by virtue of being a reader, has much in common with the experiences and
environment of Thucydides.  Thucydides would probably not make sense to a 16th
century Inuit with no experience with large scale political hierarchies, and demonstrably
the political argumentation of Thucydides makes little sense to a 20th century seven-year-
old, even if the words and sentences are understood.

Comprehension and utilization of political theory, then, is a combination of both
transmission and experience.  It is not sufficient simply to convey information; instead it
must link with the information common between the sender and receiver.  Just as a
modern archaeologist must puzzle out the utility of oddly-shaped stone tools in a
Neanderthal's cave, and a Neanderthal would have found equally mysterious a 20th
century mechanical pencil, both objects make complete sense, and have utility, in their
original environment.  As 20th century humans, we find our political environment has
enough in common with the environments of Thucydides' Greece and Mencius'
China—to say nothing of the industrializing Western Europe of Marx and Weber—that
we can understand their theories.6  The development of aircraft could not proceed until

                                                  
5 There are in addition numerous works of "political theory" that we in twentieth-century North America do
not find transcend time and culture, including virtually the entire production of the medieval Church, the
pro-slavery tracts of the 18th and 19th centuries, and most of the German bellicist writers, not too mention
much of non-Western political theory. [2nd edition: And in fact, due to J. R. R. Tolkein’s status as on the
20th century’s greatest medievalists, Lord of the Rings is actually a fairly good introduction to many
aspects of medieval mindset.  My opinion remains unchanged on Peter Pan…]
6An extreme cultural relativist would argue that true "understanding" is never achieved because there are
always critical differences.  In the strictest sense, this is true, but the issue is actually one of degree, not
kind.  Environments are never identical between individuals, much less societies: George H. W. Bush’s
Vice President J. Danforth Quayle and I both grew up in Indiana, in the United States, in a late 20th century
Anglo-American political culture, and yet many of our fundamental assumptions about political culture are
doubtlessly (hopefully...) profoundly different.  In contrast, I can go to a region where there is a totally
different political culture, and with time and effort still learn to internalize enough of that environment to
be able to "understand" that culture sufficiently well to make intelligent statements about it.  The validity of
these statements can be ascertained either by the agreement of individuals who are native to the culture
(agreement by a native being the criterion used in ascertaining whether a sentence is grammatically correct)
or by making successful predictions.

I've noticed that when one becomes involved in serious first-hand cross-cultural political exchange (as
opposed to debate), a tremendous amount of effort is spent exchanging information that can be used to
construct an accurate model of how the other political system works ("No, no, that's not what we would do,
and here's why...").  The process is eerily similar to a machine-learning protocol.  Such communicated
understanding is never perfect—just as an accent learned by an adult is seldom as good as that acquired in
infancy by a native speaker—but much can be learned, and it is greatly facilitated by the accumulation of
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designers learned to pay attention to the aerodynamic shape of bird wings but not to the
birds' method of propulsion; we need to make similar decisions in the design of
computational models of political behavior.

In Defense of Induction
Most of the approaches I have discussed in this work are inductive: They seek to

derive patterns out of a set of data rather than using data to validate general theoretical
principles.  This approach is at odds with much of the behavioral approach, which is
deductive.  The early behavioralist researchers in international relations clearly—one
might suggest obsessively—compared their endeavors to those of the physical sciences.
Their archetypes were the idealized models of science expounded by Popper, Hemple,
Carnap and, primus inter pares, Kuhn.7

This infatuation with the supposed norms of the natural sciences neglected the not
insignificant fact that very little scientific research, outside the rarefied realms of purely
theoretical physics and cosmology, lives up to such standards, and the mathematical
social sciences have gone well beyond the physical sciences in their standards of rigor.
Reporting on the Santa Fe Institute, a collaborative effort of physicists and economists to
share ideas, Pool observed:

The physical scientists were flabbergasted to discover how mathematically rigorous
theoretical economists are.  Physics is generally considered to be the most
mathematical of all the sciences, but modern economics has it beat. ...  The flip side
of the physicists' surprise at the rigor of the economists was the economists’
astonishment at the physicists' lack thereof. (Pool 1989,701)

The biological sciences, ploddingly inductive, evolutionary rather than
revolutionary, experienced in dealing with complex interacting systems rather than
idealized points and vectors, would have been more appropriate model for the formal
study of international politics, but this was not to be.

Because computer understanding is distinct from human understanding,
computational models require an inductive theory of human behavior—one that can
discover, rather than verify, laws or patterns.  Unfortunately, induction has been given
very little attention in 20th century philosophy of science:

Bacon (1620) undertook to construct a theory of discovery that included advice and
heuristics for effective discovery processes, and John Stuart Mill's (1843) famous

                                                                                                                                            
information and experience within the culture; nothing beats being there.  One of the dumbest assumptions
of the 1960s behavioralists was that this process of area-specific knowledge acquisition could be
completely bypassed when trying to understand political behavior.
7The social scientific community's obsession with the Kuhnian concept of scientific progress is a mystery in
light of the all but total rejection of Kuhn as a general model of science by historians and philosophers of
science.  One need go no further than the whole of the biological sciences to find a counterexample.
Biology shows progressive refinement of a single model rather than the dramatic paradigm shifts predicted
by Kuhn.  Darwin's theory provided the theoretical underpinnings for the inductive Linnean classifications;
Mendelian and population genetics provided mathematical order to the Darwinian system; the biochemical
revolution beginning with the study of DNA provided a chemical explanation for Mendelian genetics.
Through it all, chimpanzees were considered closer to apes than to frogs, and 17th century botanical studies
can still be useful to a 20th century biological ecologist.
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rules of induction were intended to facilitate and systematize the process of
generating hypotheses.  However, in the late nineteenth century, philosophers of
science began to express more and more doubt about the feasibility of providing
"rules of discovery" and to turn their attention more and more towards the process
of verification.  [By the twentieth-century] it was frequently claimed that there
could be no logical method or theory of scientific discovery; that discovery was a
matter of "creativity"—the free play of the human creative spirit. (Langley et al
1987,37)

While the early 20th century positivists were clearly reacting in part against the
admittedly excessively descriptive nature of 19th century science, one cannot help but
suspect that the image these philosophers had of turn-of-the-century physics—pure
intellect attacking problems ranging from the invisible structure of the atom to the origin
of the universe—was more attractive than their image of the mid-19th century empirical
inductivists, who mucked about describing the slugs they found under rocks and doing
life-threatening experiments with electricity, heavy machinery and toxic chemicals.

The late 20th century renaissance of interest in induction (see for example
Michalski, Carbonell and Mitchell 1983; Langley et al 1987; and Holland et al 1989), in
turn, comes out of a recognition that these early philosophers of science were working
with an idealized view of the enterprise.  Even in physics and astronomy, the triumph of
pure intellect is the exception, not the rule:8 Maxwell's elegant unification of
electromagnetic theory was possible only because it built on the ugly experiments of
Faraday; the Copernican reformulation of astronomy came only after the meticulous
empirical work of Brahe.

In fact, pattern recognition has often been the precursor to axiomatic systems in
science.  The Darwinian theory of evolution was built inductively on the Linnaean
taxonomies of the 18th and 19th centuries, augmented by Darwin's own global
observations during the voyage of the Beagle.  Darwin's eventual theory, while deductive,
arose from his heuristic analysis of a very large database rather than from first
principles—in fact, it arose despite the first principles of the prevailing Biblical theories
of creation.

Astronomy, physics and even mathematics also followed this progression;
Babylonian and Egyptian mathematics were originally based in pattern recognition.9

Mathematics was not put on an axiomatic base until the Greeks, and astronomy and

                                                  
8 Brush (1989: 1124) notes for example: "The first large-scale systematic effort to test [Popper's
falsification thesis] and other methodological claims against evidence from the history of science was
planned and carried out by a group of scholars at [VPI].  A striking result of their research is that
predictiveness or falsifiability was not considered important by key scientists in the three cases where this
factor was examined: ... Galileo's work on the Copernican system, ... Ampère's electrodynamics, and ... the
reception of nuclear magnetic resonance."  For other discussions of scientific creativity, see Hanson 1958,
Newell and Simon 1972; Nickles 1978 and the studies of induction cited above.
9 Eves observes

It should be noted that in all ancient Oriental mathematics one cannot find even a single instance of
what we today call a demonstration [proof].  In place of an argument there is merely a description of
a process. … Moreover … these instructions are not even given in the form of general rules, but
simply applied to sequences of specific cases. … It was expected that from a sufficient number of
specific examples, the general process would become clear. (Eves 1983, 22-23)
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physics did not gain this form until the eighteenth century.  In the modern sciences,
organic chemistry is still deeply involved in pattern matching, since the interactions of
complex molecules are too convoluted to predict theoretically, and this is also true for
much of geology, most of medicine, and most of meteorology.10

If one looks at what we do as opposed to what we say, most contemporary social
science research is in fact quite inductive.  I know of hardly any methodologists who
formulate a hypothesis, uniquely operationalize each variable, collect the appropriate
data, and then conduct a test.11  More commonly, we start with a general set of
hypotheses, try an assortment of alternative variable specifications, experiment with
many, many different forms of the relationship, and then—recognizing that we've
violated any pretense of the independent trials assumed by the significance test—hope
that the model we finally publish is at least a reflection of an underlying political reality
rather than an exercise in machine-assisted self-deception.

The early behavioralists studying international relations thought that they were
building their empirical science upon fully-developed and logically consistent theories of
international behavior: Realists and game theorists on the political right and Marxists on
the political left were independently convinced their approaches provided such a
foundation.  But those theories survived neither logical nor empirical scrutiny.  The study
of international politics is not poised for takeoff into the halcyon heights of a purely
deductive science; there remains instead a lot of ugly inductive grubbing to be done.

One advantage to using a computer for inductive studies is that the machine comes
to the data with no preconceptions, and so can provide a "second-opinion" biased only by
the choice of variables and the model presented it.  For example, Bennett and Schrodt
(1987) found the behaviors measured by the WEIS event data set to be exceedingly
boring most of the time.  We didn't go into the study thinking that the data were boring,
because like most analysts, we focused on the exciting parts.  But from the machine's
perspective as an outside observer, the events were pretty predictable most of the time.  A
human in contrast comes to any data analysis with numerous preconceptions based on
culture, experience, academic learning, organizational norms of interpretation and other
biases.  We probably come closest to pure induction when dealing with a radically
different culture (e.g. Islamic fundamentalism for most North Americans), and then often
as not get it all wrong.12

A machine is disadvantaged in having neither physical common sense nor, more
importantly, a human "personal sense" that allows it to fill in missing information and
infer motives.  Unless programmed or taught that sort of information, a computer can

                                                  
10 While weather forecasting can be done deductively using numerical simulation—a technique pioneered
by the Lewis Richardson of arms race fame—human weather forecasters tend to use heuristics, analogy and
pattern recognition.  Kerr (1989) discusses recent developments in weather forecasting using computerized
pattern recognition; one such system "is as skillful as human forecasters have been during the past 25
years" in making 90-day forecasts.  Computer-generated graphics have revolutionized the presentation of
weather information to the point where the topic can support its own cable TV channel, with nary an
equation in sight.
11 I do know of one such case, and the test found a single rather obvious factor explained 85% of the
variance in a dataset that had required a decade to prepare.
12  [2nd edition] Yes, I wrote that in 1995…
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only detect certain forms of behavioral regularities.  Machines are not about to replace
human political analysts, but they certainly could supplement them.

McCloskey (1985,50) notes that in the 1930s one of the consequences of the huge
influx of European academics fleeing fascism was that the indigenous United States
scientific modernism of  for example, William James and John Dewey, was “killed off ...
in favor of a harsher European type.”  Almond (1991) charts much the same transition in
some aspects of political science.  However, the biological sciences in the United
States—sufficiently well established in this agricultural country to survive a European
takeover—continued to thrive on their indigenous roots.

While heartily approving of certain aspects of this European influence—for
example the introduction of mathematics as a logical language—I do wonder, particularly
in light of my earlier remarks on the role of culture in understanding, whether the
resistance shown by most beginning graduate students to internalizing methodological
concepts originating in Vienna in the 1920s may stem from trying to nurture those
concepts in alien ground.  Given sufficient resources and protection from competition, an
alien plant can survive in any environment; still, there is something to be said for the
native flora.13

Technology
Computational modeling is dependent at a very fundamental level on the

availability of computing power and large amounts of data.  Designing a computational
process that requires computing power beyond that feasible with current technology is
quite straightforward and these limits tend to be encountered relatively quickly when
dealing with a complex phenomenon such as political behavior.  Fortunately, the
availability of computing power, data and software has improved dramatically over the
past decade, and further major improvements are close at hand.

Computers
Since the early 1960s, computing power has always been available to an elite,

though the identity of that elite was, often as not, determined by the United States
Department of Defense.  Prior to the 1980s, the rest of us had to depend on the campus

                                                  
13Lest I be considered a cultural isolationist, what bothers me is the privileged position of northern
European concepts in the social sciences.  When French and German vocabulary are used in social science
debate—preferably without translation—this is considered a sign of the savoir faire of one's Gemeischaft.
Use an Islamic or Confucian concept and you're considered something of a nut.  In far too many cases,
what passes as "internationalism" in the social sciences in the United States is simply northern
Europeanism, and bi-ethnocentrism is little improvement over ethnocentrism.

This is particularly problematic in computational modeling because northern European culture is an
outlier with respect to Hall's (1976) distinction between high context and low context communications.  For
example, researchers from high-context cultures—Asians, Arabs, Africans and Latin Americans, as well as
the high-context subcultures of many North American and European females, in short, most of the world
except for the white males of varying states of motility who dominate the social science canon—would find
ludicrous the premise that a valid model could be derived solely from the explicit communications within
an organization.
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computer facilities whose effective computing power would have been stressed running a
low-level word processor.  This restricted what could be done with these machines, as did
the limited choice of operating environments and the lack of storage space for large data
sets.

By the early 1990s, this situation had changed substantially: Table 7.2 compares
the capability of an advanced personal computer that might be purchased by a average
computer-oriented social science researcher in 1980 and 1995.14  In fifteen years, speed
has increased by almost two orders of magnitude, random-access memory by two and a
half orders, and disk capacity by more than three orders, while the price/salary ratio has
dropped by half an order of magnitude.

Table 7.2.  Comparison of Hardware

Apple II Macintosh 7100
Year purchased 1980 1995
Processor speed 1 Mhz 80 Mhz
Data bandwidth 8-bit 32-bit
Random access memory 64 Kb 16 Mb
Disk storage 320 Kb floppy disk 720 Mb hard disk
Display black and white color
Time required to compile 2 minutes 1 second
1000-line Pascal program

Cost as percentage of assistant $5000/$15000 = 33% $2500/$35000 = 7%
professor's salary

Increased speed, memory and storage will not, by themselves, solve all of the
problems of computational modeling: one cannot bludgeon all problems into submission
with faster hardware.15  Given researchers have finite amounts of time, experiments that
were impractical when a program required ten hours to run become practical when that

                                                  
14 A typical social scientist doing research in 1980, of course, would have used a shared mainframe rather
than a personal computer, but these rationed mainframe resources were woefully inadequate for
computationally-intensive modeling.

Superior computing environments were available in the AI labs funded by the Defense Advanced Research
Projects Agency (DARPA), but those labs produced no international relations research of note and are thus
largely irrelevant to the social science enterprise.  Until recently DARPA has been responsible for much of
the development of computer infrastructure in the United States but, constrained by a Congressional
mandate from working in areas of public policy, DARPA sponsored very little international relations
research with the exception of an ill-fated experiment in event data analysis in the 1970s (Laurance 1990).
15 But one can bludgeon some problems into submission: In the computer chess competitions, the machines
that attempted to play chess using human-like information processing—e.g. pattern recognition—were
eventually outpaced by specialized chess-playing hardware that used simple search techniques and
extremely fast parallel processing.  Bad for theory, but whoever had the most CPU cycles won. [2nd
edition: As noted in Chapter 8, by 1997 that increased power overwhelmed even the best human
opponents.]
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same program requires two minutes.  Because computational modeling methods are
information intensive, the increased disk and memory capacity is also very important.

The hardware available today to the average academic researcher has about the
same power as the specialized artificial intelligence workstations of the early 1980s, and
substantially more power than any social science user had available in a mainframe
environment in any era.  This is further leveraged by interfaces and programming
environments that enable an individual to manage far larger projects than would have
been possible earlier.  The growth in personal computing power shows no signs of
stopping, and within the next ten years the power of a desktop machine will probably
surpass that now associated with supercomputers.  Of particular interest for
computational modeling is the development of inexpensive parallel computing
configurations, which could be effectively applied in most of the machine learning and
sequence analysis methods I've discussed.

Data Sources
The ability to code data directly from machine-readable sources has substantial

implications for computational modeling.  Natural language reports on political activity
are readily available through commercial on-line data services such as NEXIS, and
inexpensive CD-ROM and Internet sources increasingly supplement these.  While most
of the machine-coding efforts to date have focused on newswire reports, texts dealing
with treaties, parliamentary debates, NGO position papers and administrative rules are
also readily available.

Coding event data from wire service reports has proven to be a straightforward task
(see Gerner et al 1994; Schrodt and Gerner 1994; Schrodt, Davis and Weddle 1994), and
the machine-coded data are substantially denser than those provided by human coding.
For example Schrodt and Gerner's (1994) comparison of a human coded, New York
Times-based WEIS set with a machine-coded, Reuters News Service-based set for the
Middle East during the 1982-1992 period found that the Reuters set contained an average
of 3 times as many events as the Times set.  This improved density was sufficient to show
patterns absent in data coded from the Times alone.  The machine-coded data were based
only on the first sentence of the Reuters reports and a system coding the entire report—or
reports from multiple newswire sources—would yield an even higher density.  Machine
coding systems can easily be adapted to work with languages other than English and this
opens the possibility of coding news sources that could provide greater detail, and a
different perspective, than English-language sources currently coded in most event data
sets.

While the original impetus for machine coding was increased efficiency—a
machine coding system can currently code about 15 events per second, which is
substantially faster than the typical undergraduate coder—two additional advantages have
emerged.  First, a specific set of coding rules is both transparent and fixed, so there is
never a question as to why a particular sentence was assigned a code, nor a problem with
the de facto coding rules "drifting" across generations of coders.  Second, the coding
vocabularies are both transferable and flexible: The vocabulary developed in one project
can be used as the basis of a new project, which allows event-coding systems to be
refined incrementally.
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The question remains as to whether open sources are sufficient to predict
international events.  Whaley notes:

The international and major independent news media are, in a practical sense,
intelligence services, and they are so used by most persons regardless of their
station in the polity or their access to conventional intelligence sources.  Indeed, the
"prestige" newspapers are known to draw readers from a far higher proportion of
senior government officials than of the literate adult citizens in general...

International news media resemble professional intelligence services in both
function and structure.  They ferret out, collect, collate, evaluate, analyze,
summarize and report vast quantities of information, and they do so with an
organization comprising correspondents in the field with their local networks and
stringers. (Whaley 1973, 238-239)

Political and technological changes since Whaley made this statement—the end of
the Cold War, advances in telecommunications—have further enhanced these
capabilities.  International business elites use the news media to obtain the same
information that foreign policy decision-makers use.  News agencies such as Reuters
know this and their economic well-being depends on their ability to provide appropriate
information.  Whether this information is in fact sufficient to predict international events
is an empirical issue, but the incentives to provide it are there.

One of the favorite parables of evangelical preachers is of a sailing ship becalmed
for weeks in the Atlantic, its crew slowly dying of thirst.  Sighting a passing vessel,16 the
crew appeals frantically for water.  The other ship replies, “Throw down your buckets;
you are surrounded by fresh water!”: the beleaguered ship is resting in the outflow of the
mighty Amazon River.

The quantitative international relations community has often felt becalmed with
respect to data—no American National Election Study, no Census and National Institutes
of Justice data, and only so many ways one can analyze the World Handbook, Correlates
of War, WEIS and COPDAB.  But in fact, we are sitting amid a river of political
data—both event-oriented and contextual—flowing every day from journalistic sources.
Those sources are increasingly machine-readable, and if we can find a means of tapping
them using the natural language capabilities of contemporary computers, we will find
ourselves awash in data.

Software
Computer programming is very labor-intensive and likely to remain so—it is a craft

akin to carpentry rather than a repetitive task akin to the manufacture of pins—and this
presents one of the major constraints on wider use of computational models.  Unlike pins
or carpentry, however, the marginal cost of reproducing an existing program for use at
another research site is arbitrarily close to zero.  Consequently, greater availability of
software could have a substantial influence on the field, just as the availability of

                                                  
16As with many evangelical parables, the movement of this second vessel under windless conditions is not
explained...
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packaged statistical programs such as SPSS, SAS and BMDP greatly accelerated the use
of statistical methods during the 1970s.

While methods such as political sequence analysis are likely to always remain
idiosyncratic, there are a number of areas where computational modeling may benefit
from the development of related commercial software and shareware.  Software for
natural language processing has begun to reach the commercial market in the past two or
three years.  Two types of programs may be of particular interest: automated indexing
software, and natural language translation (e.g. English/Spanish) software.  The indexing
software is useful for extracting networks of relationships in a large body of text; the
translation software is useful because it must deal with such problems as disambiguation,
idioms, and subject-object identification; these same problems are critical in coding
events and rules from natural language text.  While these programs are still relatively
primitive—probably about at the level of word processors in the early days of
WordStar—they meet substantial needs in the business sector and are likely to experience
continued development in the next decade.  Accompanying the software will be the
development of linguistic databases such as dictionaries, thesauri and semantic networks
that could be used in specialized programs to code more complex data structures than the
simple event data we currently code.

Second, some software implementing computational methods is now becoming
widely available.  For example, in the month before I began the final revision of this
manuscript, SPSS announced the availability of software for constructing a variety of
neural networks,17 the Sage Quantitative Applications in the Social Sciences series issued
a new monograph on classification algorithms (Bailey 1995); and Byte (October 1995)
featured a special section on inductive "data-mining" using clustering and related
methods.  Software designed for the construction of expert systems using production
system or backwards chaining has been available for a decade, as have various "rule-
generating" programs based on ID3.  As this software becomes more widely available, it
will be much easier to experiment with a variety of computational techniques, much as
we can presently experiment with the different statistical techniques available in the
standard packages.

As noted above, these increased resources will not, in the absence of appropriate
choices of theories and data, lead automatically to a computational modeling utopia.  But
they certainly open possibilities that were unavailable even a decade ago.  The fact that a
computational modeling experiment has not been done in the past should not be taken as
evidence it is a bad idea.  Instead, the experiment may earlier have been impractical.  It
also still could be either impractical or a bad idea, but this judgment should be suspended
until it has been assessed with current resources.

Five Challenges for Computational Modeling
The computational modeling field is still in its infancy—except for the early work

of Alker, Thorson and Sylvan, and a few other researchers, serious efforts at model

                                                  
17 Commercial neural network software has been widely available since the mid-1980s; the breakthrough is
seeing it offered in a statistical package such as SPSS.
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development for international relations research have been underway for only about a
decade.  This section will outline five projects that I believe could be done with
existing—or soon to exist—theory and technology and which would significantly
advance the field:

Real time forecasting of events using machine learning
With the improvements in automated event data coding, real-time forecasting of

events is now a possibility.  A successful system—even in a limited domain such as
refugee movements—would answer the continual criticisms that formal approaches to
international politics have told us a lot about European alliance structures in 1912, but
they can't say what will happen in the former Yugoslavia in 1997 (see for example
Herspring 1992, Gaddis 1987, 1992/93).

As I've argued above, forecasting does not necessarily mean crisis forecasting, the
focus of most event data research to date.  There would be considerable utility in being
able to forecast day-to-day events provided that actual events were forecast rather than
some grossly aggregated numerical measure.  The techniques discussed in Chapters 5 and
6 demonstrated a variety of ways that one can work with discrete events.

Understanding background patterns is probably a prerequisite to any good crisis-
forecasting model.  Many crisis-forecasting efforts have treated the problem as though it
were similar to that of earthquake forecasting, where the geological system is usually
doing nothing (or almost nothing) until it erupts into a short, distinct shock.  The problem
of political crisis is actually more like that of tornado forecasting, where the weather
system can produce a variety of complex—and possibly quite damaging—conditions
short of a tornado.  The task is therefore distinguishing storms that will generate
tornadoes from storms that will not, and rather than looking for faint precursors on
otherwise quiet days, we must look for distinctive signals amid an already tumultuous
background.18

Computational models, with their huge knowledge bases, are also much more
complex than the models normally encountered in formal international relations research.
As a consequence, the models run a greater risk of being tautological, simply
incorporating the data on which they have been trained, and parroting this back when
tested.  Split-sample tests are one way of dealing with this, but prediction solves the
problem even more credibly because neither the model nor the modeler has seen the data
before.

As noted in Chapter 3, human analysts tend to predict sets of events, rather than
single events, and do so in part because the actors in the international systems are
themselves typically working through a number of contingent plans.  One of the difficult
issues in working with event-oriented predictions—as opposed to numerical
predictions—is finding a metric that reflects plausibility.  For example, if a model of
international interactions in the Middle East had predicted war between Israel and Jordan
in October of 1990, this prediction,19 while erroneous, would be considered more
                                                  
18 Moving the RAND Corporation from the Los Angeles County to Kansas would perhaps increase
sensitivity to this distinction...
19 In July 1990 there was considerable talk "on the street" in Jerusalem of this possibility; the plan, if it ever
existed, was preempted by Iraq's invasion of Kuwait in August 1990.
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plausible than a prediction of war between Jordan and Saudi Arabia, and much more
plausible than a prediction of war between Jordan and Cambodia.  In prediction, as in
horseshoes, closeness counts.

Evaluating the timing of forecasts presents another set of problems.  As noted in
Chapter 2, international behavior—in contrast to many physical and economic
processes—is only weakly linked to calendar time.  Analysts are usually more concerned
with the sequence of events than with the precise timing of events and in circumstances
where an event has a number of independent antecedent conditions—which is most
circumstances—even the sequence may be partially indeterminate.  But unless a model
can provide some indication of whether the next step in a sequence will occur in the
immediate or distant future, it has little practical utility.  More work is needed on
estimating and evaluating models that involve both sequential and temporal elements.

Finally, international behavior is very modal: most nations in the international
system most of the time do the same things again and again.  This is a general problem in
political analysis, embodied in the (presumably apocryphal) story of the intelligence
analyst who, on retiring in 1950, stated "Every day of my career I issued a memo
predicting that Europe would remain at peace if at peace, and at war if at war.  I was in
error only four times."  A model that predicts only modal behavior, or in a time series
simply predicts autoregressively the continuation of existing behavior, will usually have a
very strong empirical record.  However, such predictions are of little interest to political
analysts.  More attention to entropy-based measures, which place greater emphasis on
rare events, might be in order.

Identification of changes in policy due to adaptive behavior
Chapter 3 argued that foreign policy is adaptive, and that at certain points in time

organizations make fundamental changes in their rules that profoundly affect subsequent
behavior in the system.  In some cases, these changes in policy are explicit and have
almost immediate effects, for example radical changes in government or the US
renunciation of the gold standard in 1971.  In other cases, however, the actual policy
change is kept secret for an extended period of time before it is revealed: examples would
include Nixon's rapprochement with China, the abandonment of the Brezhnev Doctrine,
and the initiation of direct negotiations between Israel and the Palestine Liberation
Organization.

Detecting such changes in the censored and noisy environment of international
events will unquestionably be a difficult task, particularly when the changes are
accompanied by extensive efforts to maintain secrecy.  However, precisely because these
efforts at secrecy are directed at human analysts, some forms of computer analysis may
be more amenable to detecting these changes because the computer is unaffected by
human cognitive preconceptions.  Again, a computer is a difference detector, the human
brain is a similarity detector.

Constructing such a model would involve monitoring two things.  First, one would
need some measure of the success or appropriateness of the existing policy that would
indicate whether a policy change was likely.  Second, one would need to monitor the
observed behaviors to see whether those behaviors have departed from earlier
norms—for example have new, unprecedented event sequences have begun to appear?
To date, most of the crisis forecasting methods have focused only on the second part of
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the problem, and their general failure (aside from the sheer difficulty of the task) may
stem in part from the lack of a model that shows how routine learning occurs.

Chronology Generators20

Political analysts spend a lot of time with textual materials simply figuring out what
events happened in the course of a political episode.  We now have available a great deal
of machine-readable text on such events—notably newswire sources such as
Reuters—but it completely mixes topics: a story on Israeli-Syrian negotiations may be
followed by one on rice production in Indonesia.  A "chronology generator" would
extract from a global news source only those stories relevant to particular policy (e.g.
negotiations concerning Bosnia or U.S. policy regarding Somalia).21    This project would
be a basic technology that would enhance all of the others discussed here, and might also
be useful for historians and journalists.

A basic system might involve building a network model of the actors involved in
the issue, then identifying keywords associated with the issue.  The chronology generator
might borrow some of the statistical methods that have been developed for automatic
indexing (see Salton 1989, Smith 1990); other elements would require political
knowledge, including sequences generated earlier by the system itself.  The generator
would then pull out a large set of possibly relevant articles from the text base, edit out the
duplicates and irrelevant material, do some sort of hypertext linking between the
information in the articles (e.g., if an article mentions that a meeting is planned, the
system would search to find a subsequent report about the meeting) and then concatenate
these into a natural language or event-coded chronology.

A chronology generator would clearly benefit from a knowledge base of "political
common sense" (e.g. knowing that an arms transfer requires a contract, payment,
delivery; see discussion below). It might also be able to use some of the methods
developed in the "qualitative reasoning" literature in AI (see Iwasaki 1989).  While the
existing AI literature deals almost exclusively with reasoning about physical systems, it is
concerned with issues of time, contingencies and with the possibility that multiple
qualitative rules might be affecting the operation of a system.  All of these problems have
parallels in the analysis of political behavior.

Simulation of realistic international behavior through the self-organization of
information-processing agents

Existing global models have been refined in a top-down fashion: the earliest all-
computer models had very high levels of aggregation—in the widely-publicized Limits to
Growth simulation (Meadows et al 1973), simply "The World"—but subsequent models
became increasingly complex by disaggregating behavior into regions, nations, nonstate
actors and so forth.
                                                  
20 My thanks to Ed Laurance for suggesting this one.
21 As noted earlier, extensive work has been done in AI on the use of scripts and story-generators in limited
domains, but there is little evidence that the labor-intensive methods used in these systems can be scaled up
to handle a large corpus of unedited text (Schank 1991).  We already have labor-intensive methods for
building chronologies in restricted domains from unedited text—they are called graduate students—and to
be useful computational methods must provide some additional advantage.
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An alternative, if ambitious, approach would be to try to build the behaviors from
the bottom up using large numbers of autonomous, information-processing agents that
would self-organize into recognizable patterns of political behavior.  As noted in chapter
2, this is the "artificial life" approach (Goel and Thompson 1988; Langton 1989; Langton
et al 1992), with the distinction that simulated human agents learn cognitively and
culturally rather than through genetic evolution.  This approach is currently being
pursued by some formal modelers in economics (see Anderson, Arrow and Pines 1988),
and considerable software has been developed at the Santa Fe Institute for such
simulations.

While ideally it would be possible to generate international behavior starting from
the individual, computational limitations might require a larger (but still subnational) unit
to be used; Cusack and Stoll (1990) are close to this approach in their study of realism.
Sophisticated "city-state" systems—which have arisen independently on a number of
historical occasions including Mesopotamia, China, and the Mayan area of Central
America—might be a realistic objective to generate through simulated self-organization.

By programming a sufficient number of ad hoc behaviors into a simulation,
realistic behaviors can be simulated easily (see Schrodt 1988a).  The problem becomes
challenging if one tries to reduce these pre-programmed behaviors to a minimum—for
example only preferences, constraints, memory, communication and myopic
adaptation—and have complex behaviors emerging through self-organization.

This project would clearly burn a lot of machine cycles and may not yet be
practical with machines at a level less than that of a supercomputer.22  If a self-organizing
simulation could be achieved, it would probably lead to substantial insights into both the
origins of international systems and to the behaviors of systems that have been severely
disrupted and are re-organizing (e.g. the former Yugoslavia; the former Soviet Union;
post-colonial Africa).  A simulation might also identify key variables—for example
resource levels, military effectiveness, and communications—that are likely to change the
types of organization the system exhibits.

Construction of organizational rules directly from documents and political
"common sense"

This is without question the most technically challenging of the suggestions I am
making, and in fact it may not be possible with current technology.  As discussed
extensively in Chapter 4, it is clearly possible to create realistic rule-based models of
decision-making organizations that account for over 50% of observed behavior, and if a
number of such models were available and could be made to interact, they would be quite
useful in analyzing "what if" scenarios (e.g. if Carter had been re-elected in 1980, would
the Cold War have ended in 1983?).  However, at present the construction of these
models is very labor-intensive because the rules need to be extracted using human
coding.

It is clearly possible—though unfortunately also labor-intensive—to create systems
for the machine coding of complex event structures in some limited substantive domains.
For example Alvarado's OpEd program (1990) "understands" editorials on issues in

                                                  
22 The simulation itself would be practical on a smaller computer but the experiments required to develop it
would not.
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political economy and can answer questions about them;23 Kolodner's CYRUS (1984)
deals with the official activities of Secretary of State Cyrus Vance; and Pazzani's
OCCAM (1988) deals with international economic sanctions.  DARPA's MUC project
(Lehnert and Sundheim 1991) is experimenting with a variety of approaches for
extracting specific pieces of information on Latin American terrorist incidents from
newswire text.  The performance of such systems is quite impressive, though they are
dependent on a large amount of domain-specific knowledge and can only work with text
dealing directly in that domain.  It might be possible to make a more general system by
using the experience of earlier cognitive-mapping projects (Axelrod 1976), and rule-
extraction might also be simplified with the availability of a very large corpus of
redundant text in machine-readable form—for example parliamentary testimony or
government-sanctioned speeches and editorials.

For the reasons discussed above, it will still be necessary to add some ad hoc tacit
knowledge to these models, though this ad hocery would be no greater than that currently
used in the construction of human-coded rules.  Supplementing the internal sources of
rules with societal sources, particularly those directed to an external audience, might
provide a data-driven way to partially get around the problem of tacit knowledge.  For
example, while Sylvan and Majeski found that opposition to communism was not
mentioned in the internal debates within the State Department in the early 1960s, Voice
of America broadcasts made no secret of this position.

Another data source that has been under-exploited by rule-based modeling efforts
are a variety of case-based data sets on war, crisis, and mediation.  These include
CASCON (Bloomfield and Moulton 1989), SHERFACS (Sherman and Neack 1993),
CONFMAN (Bercovitch and Langley 1993) and KOSIMO (Pfetsch and  Billing 1994).
These datasets contain a substantial number of historical precedents that could be used
for case-based learning or reasoning, and their complex data structures—a liability in
their use in statistical models—can be easily accommodated in a rule-based model.

In addition to explicit rules, tacit knowledge and precedent, a rule-based system
will require a great deal of political "common sense."  The CYC project (Lenat and Guha
1990) is based on the premise that once a sufficient amount of basic knowledge and
natural language skills are provided to a computer, it will hit a take-off point where it can
learn subsequent information in a fashion similar to a human: reading reference materials
and integrating this new knowledge with what it already knows.24

Whether the CYC project will succeed or fail is still unclear, though the results
should be known within a couple of years.  If it succeeds, one might envision a similar
project—on a much smaller, social science scale—for modeling political knowledge that
uses the higher-level information acquisition and representation technologies of CYC, as
well as some of its lower-level social knowledge.  We have readily available basic books
on political behavior, ranging from the simplified histories using in elementary schools to
the social studies books of the secondary schools to college level textbooks.  It might be
                                                  
23 The source texts require some editing before processing, so it is not clear that the system would work
with unedited newswire material.
24The CYC project is attempting to construct a set of common sense rules that will approximate the
knowledge base of a five-year-old.  The estimated size of this data base is 10-million rules (Economist
1992,13).  In political analysis (as well as CYC), common sense is not limited to physical phenomena but
also includes information on social norms, though these will obviously be culturally dependent.
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possible to derive a fairly elaborate model of general political behavior from these,
perhaps one capable of answering political questions at the level of a college sophomore.

If this proves possible, an interesting experiment would be to try learn the political
knowledge taught in different cultures, for example that reflected in the primary school
history textbooks used in the United States, Egypt, Brazil, Nigeria, Russia and Japan, to
see what differences emerge.  At this elementary level, where the most basic formal
political sequences are first learned, I suspect one would find a significant cross-cultural
divergence that could be systematically modeled: as noted in Chapter 3, the political
patterns implied by the Iliad and the Ramayana are quite different.



Chapter 8
EPILOGUE

In the decade or so since the first draft of this manuscript was completed, much has
changed in some areas, and little has changed in others.  This epilogue is intended to
serve three purposes: First, for the benefit of those outside the field of political science
and newcomers (read: graduate students) unfamiliar with the current state of the
discipline, it will provide an historical analysis of why the computational approach did
not take off as a standard analytical method in international relations.  Second, I will
assess where I (and the AI/IR field more generally) got things right, and where we got
them wrong.  Finally, I will say a few words about the two computational methods that
have entered the mainstream of the field, at least for purposes of applied analysis, since
1995: automated coding and hidden Markov models.

The Demise of the Computational Modeling Approach
The end of computational modeling effort as a collective endeavor came in the

early 1990s and was due to three factors, one self-inflicted and two external.  The
obvious external factor was the well-documented second “AI winter”—the over-all
decline in interest in AI methods that followed the excess of hype and unfulfilled
promises of the early 1980s (Hiltzik 2002).  Except as a field of academic research, AI as
a discrete enterprise largely collapsed, particularly when off-the-shelf computers became
quite capable of handling most AI applications, thus eliminating the market for
specialized “AI” hardware whose premium prices had financed much of the specialized
software research outside the academy.  The idea that a mass-market bookstore such as
Borders would not only have an entire section devoted to “artificial intelligence” but that
one could track the nuances of the field by looking at the featured titles (Chapter 6,
footnote 2) now seems totally anachronistic.  AI specialty firms such as Symbolics and
Thinking Machines went bankrupt in the early 1990s, and by the mid-1990s, attention
and venture capital funding had shifted to an entirely new target (and bubble…), the
Internet.

The great irony of the second AI winter is that in contrast to the first AI winter in
the 1970s—the response to hype and unfilled promises in the 1960s—many of the core
technologies developed in the 1980s actually worked.  The apparent “collapse” was
simply the transition of these techniques from the phase of esoteric research to one of
applied engineering.  In fact, the 1990s saw many of the promises of the first AI boom of
the 1960s fulfilled through a combination of massive increased computing power and the
accumulation of incremental research advances.  In 1997, IBM’s massively parallel
computer Deep Blue defeated Gary Kasparov, the reigning human grandmaster in chess,
and chess playing programs are now simply an interesting gimmick included with most
computers as free software.  Okay, so AI pioneer Herbert Simon had predicted in 1957
such a defeat would occur by 1967 (Hiltzik 2002: 49), but better late than never.

Automated translation of human language, while hardly flawless, is now available
at the click of a mouse on many web sites; in industrialized countries one now routinely
interacts with voice recognition.  Rule-based systems and neural networks are now
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routinely used in industrial and consumer applications, and neural networks (and data-
mining tools) are now part of several statistical packages, notably SPSS.  Lenat’s CYC
project (http://www.cyc.com) for codifying common sense is still going, and has now
accumulated a database of some 1.5-million assertions.

This mainstreaming of AI, however, has generally not affected quantitative analysis
in international relations, with the partial exception of neural network models and
automated coding.  The reasons are due to a combination of the mindless self-destruction
of the core AI/IR research group in the early 1990s, and the “competitive exclusion” of
the AI/IR by other, quite legitimate, methodological issues and interests during the
remainder of that decade.

The self-destructive component was the emergence of an intense interest by
several individuals in the AI/IR group in “post-modern deconstructionism”, a short-lived
academic fad that tore through the humanities and social sciences in the early 1990s with
the virulence and intellectual coherence of a stomach flu epidemic in a day-care center
(Sokal and Bricmont 1999). Significant segments of an aging Baby Boomer generation,
finding that they had nothing new to contribute, solipsistically concluded that no one else
did either, and found solace in a nihilistic creed originally propounded by former Nazi
collaborators following World War II.

The results within the AI/IR group were ugly: the “mean green meme” of post-
modernism (Wilber 2002) did not brook criticism or alternative agendas lightly.  All
ideas were equally valid, except ideas that suggested that all ideas might not be equally
valid. Collaborative grants for computational IR research were hijacked and re-directed to
purely post-modernist agendas, and individuals with quaint notions that computational IR
research might involve, say, writing code and analyzing data, were—to use the 21st

century term—“voted off the island.”  The AI/IR panels that had once been a well-
attended feature of the International Studies Association and American Political Science
Association meetings came to a halt along with any further attempts at collaborative fund
raising, and the collective enterprise died.  Several key researchers dropped out of the
academy altogether; none produced a generation of graduate students trained to carry on
the methodology.

In some small way this fate was perhaps deserved: live by the fad, die by the fad.
There was even a tenuous—very tenuous—link between the natural language processing
focus of some of the AI/IR research and the dubious contention of post-modernists as to
the infinite flexibility of humans to “construct” any world by words alone.  This option
would be news to anyone scrapping together a livelihood in a developing country or
trapped amid a maze of military checkpoints1, but is apparently how the world works for
those comfortably ensconced with a tenured position or a fat trust fund.  As the post-
modernists typically spent most of their time in libraries, chatter-filled seminar rooms,
and self-reinforcing conferences rather than in the field watching actual political events,
their failure to note these inconvenient realities can be understood, if not excused.

While the self-inflicted wound of post-modernism was the death blow to the once-
promising AI/IR effort, that agenda also failed to compete successfully in the more
general marketplace of reasonably sane ideas.  Two points are particularly noteworthy.

                                                  
1 Been there, done that…
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First, from the perspective of international relations, statistical research during the
decade of the 1990s was dominated by a single theoretical issue: establishing first the
validity of the “democratic peace” hypothesis—democratic states do not fight wars
against each other, although they fight wars in general with the same frequency as non-
democratic states—and later trying to ascertain whether the true mechanism was the
democratic peace or the “liberal peace”—wealthy states with strong trade linkages do not
fight wars with each other (Schneider, Barbieri and Gleditsch 2003; Bennett and Stam
2004).  These questions could be addressed, albeit imperfectly (they are difficult
questions given the available data) with existing statistical methods and, with the possible
exception of neural networks, the computational methods had little to contribute that
would justify the necessary start-up costs.

Second, the political methodology community recognized the new worlds opened
up by increased computing power, but directed this to the estimation of models that were
grounded in the older statistical paradigms.  In the first half of the 1990s focused on the
estimation of maximum likelihood models of ever-increasing complexity (King 1989b)
using numerical approximation methods; by the late 1990s and early 2000s, attention had
turned to Bayesian methods (Gill 2002).

Where we are now
This section will not attempt to review all of the methods discussed in the original

text—that would involve the update that I wished to avoid—but instead focus on various
issues that I think a reader in the mid-2000s should be aware of before trying to proceed
further with the methods

Application of basic computational methods
In terms of the basic methodologies, the core repertoire of computational methods

outlined in this document—rule-based systems, ID3, genetic algorithms, neural networks,
and inductive cluster analysis—remain the core.  To the best of my knowledge—and
since I haven’t been following this area as closely as I once did, I would be delighted to
hear of additional approaches—these remain the core computational methods with the
exception of hidden Markov models, which I discuss below.

In terms of applications, the only methods that has achieved significant legitimacy
is the neural network, but that has done well, both through the championing of Zeng,
King and Beck, (Zeng 1999, Beck, King, and Zeng 2000) and through applications in the
State Failures project (Esty et al 1995, 1998).  But despite these high-visibility efforts,
neural network models are still encountered only rarely in comparison to standard linear
methods. If Harvard’s Gary King, arguably the most influential political methodologist of
his generation, can’t legitimize neural networks with an article in the American Political
Science Review, arguably the most visible journal in the political science profession, it is
clear that they aren’t going to catch on quickly…

Critique of rational choice
My critique of rational choice modeling, while hardly original, is certainly far more

central today than it was ten years ago, and a small-scale industry—the obnoxiously (but
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accurately) named “post-autistic economics” movement (Fullbrook 2003;
http://www.paecon.net/)/ has grown up attacking the core assumptions of rational choice,
largely on experimental grounds.  The intellectual investment in rational choice modeling
is sufficiently great that I have no expectation that it will disappear—among other things,
far too many of its adherents have tenure, and like the mean green meme of post-
modernism, rational choice advocates do not take kindly to criticism—but I would
gradually expect it to die away.  It is one thing to adopt a theoretical approach that
appears to be an over-simplification—all theories simplify—but quite another to buy into
a set of assumptions that have been demonstrated to be dead wrong through a series of
elegant and readily replicated experiments, and through some of the advanced technology
ever used to study human thought processes, functional MRI scanning.

If current trends in academic economics continue, the next generation of political
science graduate students will duly be taught rational choice methods, and dutifully
evidence an interest in it through the period of qualifying exams.  After that point, the
weakest students will continue to adhere to the received wisdom, and bask in the
unaccustomed praise they receive from certain senior and quite distinguished figures in
the profession.  The average young scholar will quietly abandon the approach, viewing
rational choice as one of those puzzling Boomer affectations, comparable to love-beads,
bell-bottoms, disco music, post-modern deconstructionism, and the Boomers’
incomprehensible aversion to tattoos and body piercing.  The best and the brightest
intellects will, with reckless but enthusiastic glee, aggressively attack the weakened
paradigm with every tool at their disposal, competing for the honor of driving the final
stake through its blackened heart.

In the end, the puppy dies.2  From the ashes is likely to emerge something that will
still claim to be “rational choice” but the revised assumptions—presumably incorporating
the fact that humans are motivated at least as much by social interactions entailing
cooperation, altruism, and justice/revenge as by autistic self-interest—and methods (e.g.
evolutionary game theory) will be so different that it is effectively a new theory.

What was missed
There are two clear misses in my treatment, though it is possible that each might be

corrected in the future, albeit from two different directions.
First, the sequence analysis approach—with the exception of HMMs—has been a

complete dead-end: no one has followed up any of these techniques.  This is true despite
the fact that sequence analysis in the cognate field of biology has exploded with the
introduction of inexpensive gene sequencing methods.  There are now books written
about—and academic positions advertised for—“computational biology,” (Gibas and
Jambeck 2001, Markel and León 2003) but none of these methods have been applied in
the analysis of political behavior.  Nor, perhaps, should they be—this may have been too
great a conceptual leap.

Second, and more surprisingly, cluster analytic methods still remain at the fringe as
an analytical technique, despite the expansion of “data mining” methods—most of which
are variants on cluster analysis—in business applications and the ready availability of

                                                  
2  Puppy?—more like a geriatric pit bull…
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software that implements these methods in a user-friendly (perhaps too user-friendly…)
fashion.

This is probably due to two factors.  The first is the aforementioned problem of
competitive exclusion—the increased computational capacity required for data mining
has been used instead for numerical analysis in MLE and Bayesian approaches.
Second—and probably even more important—is the unfortunate association of the term
“data mining” with atheoretical statistical fishing expeditions, which might better
characterized as computer-assisted statistical self-deception (SASSD?— sassed…one
would do worse in terms of acronyms).  Since failure to adequately answer the question
“where’s the theory?” is the kiss-of-death in job interviews and article reviews, this
reluctance is understandable.

From the perspective of this presentation, that is unfortunate, since I have argued
that cluster-like generalization is probably one of the most commons forms of human
inductive reasoning.  Furthermore, the past forty years of quantitative international
relations research have many of the elements of a collective fishing expedition—once a
data set is made available, one tends to see virtually every possible subset of the data
tested for something, often with the most tenuous of theoretical justifications (and this
involves only the published literature—vastly more hypotheses have been tested, failed,
and left in the proverbial “file drawer”).  It would, frankly, be a whole lot more efficient
simply to do all of this once and be done with it, but we are still in a situation where that
which is permissible for the collective is not permissible for the individual.

A resolution of this paradox may, perhaps ironically, eventually come out of the
new efforts to systematize “small N” qualitative research.  In that mode, high-
dimensional case descriptions are used to subset cases, placing “like with like” and from
those categorizations, coherent theories are produced.  Human analysts have been doing
this for years, and as systematic methods are developed for doing this—work on this is
just beginning, in my opinion—it is likely to result in something that is similar to cluster
analysis.

What is new
Two new methods have emerged since 1995 that are at least the focus of multiple

research efforts, if still hardly mainstream.  The most significant of these has been the
emergence of machine-coded event data that attained legitimacy in the late 1990s. The
KEDS project that was mentioned in Chapter 7 continued through that decade, and in the
spring of 2000, produced a new automated coding system named TABARI—Textual
Analysis By Augmented Replacement Instructions (http://www.ku.edu/~keds/
software.dir/tabari.html)—that is based on the same sparse-parsing principles as KEDS
(and hence can use dictionaries developed for KEDS) but is far faster and more flexible.
KEDS was written in Pascal and worked only on the Macintosh operating system;
TABARI is written as open-source code in ANSI C++ and is available on the Linux,
Macintosh, and Windows operating systems.  TABARI eliminates some deep-seated
idiosyncrasies of KEDS and is about 70-times faster on equivalent machines, reducing
the time required to recode a data set from hours to minutes or even seconds. Using this
technology, we’ve produced about two dozen regional event data sets, primarily focusing
on areas experiencing protracted conflict (http://www.ku.edu/~keds/data.dir/).
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During this same period, the consulting firm Virtual Research Associates (VRA;
http://vranet.com) independently developed another automated coding system, the VRA
Reader (http://vranet.com/productsRead.html), which is based on full parsing, a very
different natural language processing approach than that used in KEDS and TABARI.
VRA has produced data for a number of government and NGO clients, and has released a
global event data set available at http://gking.harvard.edu/files/bonds.zip containing
about 3.7-million events based on Reuters reports from 1 January 1991 to 31 December
2000.

The KEDS project originally became involved with machine coding because, after
initial start-up costs, it is dramatically faster and less expensive than human coding.
Once a researcher has established vocabulary lists of actors and verb phrases, the only
significant expense involved in generating event data is the acquisition of machine-
readable news reports.  Furthermore, a coding system developed at one institution can be
used by other researchers through the sharing of vocabulary lists and coding software;
this has been part of our collaboration with the PANDA project.

In working with KEDS, we discovered two additional advantages to machine
coding.  First, it is free of non-reproducible coding biases and is therefore both reliable
and transparent.  Human coding is subject to systematic biases because of unconscious
assumptions made by the coders.  For example, Laurance (1990) notes that even expert
coders in the military tended to over-estimate the military capability of China in the
1980s because they knew China to be a large Communist country.  When students do
event coding part-time, coder biases are even more unpredictable and difficult to control.
In contrast, with machine-coding the words describing an activity will receive the same
code irrespective of the actors or time period involved.  Any biases embedded in the
machine coding system are preserved explicitly in its vocabulary and can be modified by
the researcher; there is no such record in human coding and thus no ability to address this
potential problem.

Second, machine coding allows the researcher to experiment with alternative
coding rules that reflect a particular theoretical perspective or interest in a specific set of
issues. Using contemporary equipment and software, our 200,000-event Arab-Israeli data
set can be completely recoded in about thirty seconds.  Historically, the most commonly
used event data sets for international relations research have been Azar’s (1982) Conflict
and Peace Data Bank (COPDAB) and McClelland’s (1976) World Event Interaction
Survey (WEIS).  These were both developed during the Cold War and assume a
"Westphalian-Clausewitzian" political worldview of sovereign states reacting to each
other through diplomacy and military threats; they are ill suited to dealing with ethnic
conflict, low-intensity conflict, or multilateral intervention.  With machine coding,
alternative coding schemes can be implemented and refined with relative ease, as the
PANDA project has already demonstrated.

When the KEDS project began in the late 1980s, accurate machine coding was
regarded as something that could only be achieved in the distant future.  As recently as
1998, an article on early warning dismissed automated coding as something beyond “our
current (or foreseeable) knowledge” (Davies & Harff 1998:81).  These pessimistic
assessments, however, did not take into account “Moore’s Law”—the doubling of
computer capacity every 18 months—which has made a desktop computer in 2000



Epilogue 241

roughly 250-times more powerful than a computer in 1988, the year discussions began on
NSF’s Data Development in International Relations event data project.

With high-capacity computers, automated coding proved to be an imminently
tractable problem  (King and Lowe 2003), and the automated coding of event data has
been accepted as both a viable—and in most cases, preferable—alternative to traditional
human coding. In 2004, the last large-scale event data project using human coding—the
GEDS effort at the University of Maryland—was closed down after an after its sponsor,
the Political Instability Task Force, shifted to automated coding following an direct
competition between GEDS and the TABARI project at Kansas. It's over—the machines
have won, in this story ol'John Henry got beat by the steam engine and there's no looking
back.

The second development—and really the only major methodological
technique—has been the use of hidden Markov models (Bond et al 2004; Rabiner 1989;
Schrodt 1999, 2000).  These were another sequence analysis method originally developed
in linguistics, and are widely used in speech recognition devices.

The HMM has several advantages over alternative models for sequence comparison.
First, the structure of the model is relatively simple and the number of parameters is
proportional to the number of Markov chain states (typically around 6) times the number
of event types, whereas in the Levenshtein metric it is proportional to the square of the
number of event types.  HMMs can be estimated very quickly, in contrast to neural
networks and genetic algorithms. The HMM model, being stochastic rather than
deterministic, is specifically designed to deal with noisy output and with indeterminate
time (see Allan 1980); both of these are present in international event sequences.  An
important advantage of the HMM, particularly in terms of its possible acceptability in the
policy community, is that it can be trained by example: a model that characterizes a set of
sequences can be constructed without reference to any preconceived underlying rules
other than those implicit in the model itself.

Consistent with the sequence analysis methods developed in this book, but in
contrast to virtually all of the statistical analysis of event data, HMMs do not require the
interval-level aggregative methods using event data scales such as those proposed by Azar
and Sloan (1975) or Goldstein (1992).  These scales, while of considerable utility, assign
weights to individual events in isolation and make no distinction, for example, between an
accusation that follows a violent event and an accusation during a meeting. The HMM, in
contrast, dispenses with the aggregation and scaling altogether—using only the original,
disaggregated events—and models the relationship between events by using different
symbol observation probabilities in different states.

The HMM also requires no temporal aggregation.  This is particularly important for
early warning problems, where critical periods in the development of a crisis may occur
over a week or even a day.  Finally, indeterminate time means that the HMM is relatively
insensitive to the delineation of the start of a sequence:  It is simple to prefix an HMM
with a "background" state that simply gives the distribution of events generated by a
particular source (e.g. Reuters/WEIS) when no crisis is occurring and this occurs in the
models estimated below.  A model can simply cycle in this state until something
important happens and the chain moves into later states characteristic of crisis behavior.

There is, in principle at least, a clear probabilistic interpretation to each of the
parameter matrices, which allows them to be interpreted substantively.  More generally,
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there is clear probabilistic interpretation of the model that uses familiar structures and
concepts such as probability vectors, maximum likelihood estimates and the like.
Finally—and not insignificantly—the technique has already been developed and is an
active research topic in a number of different fields.  The breadth of those applications
also indicates that the method is relatively robust.  While there is always a danger in
applying the technique du jour to whatever data on political behavior happen to be laying
around, the HMM appears unusually well suited to the problems of generalizing and
classifying international event data sequences, a task for which there are at present no
particularly satisfactory solutions.

However, HMMs have proven disappointing in two regards.  First, none of the
methods that I am familiar with—and I have experimented with quite a few
variations—produce unique parameter estimates, though it is unclear whether this is due
to the equations being under-identified or to the problems of maximizing a high
dimensional service with a large number of local maxima.  Second, HMMs, like neural
networks, employ a diffuse parameter structure that is very difficult to meaningfully
interpret in practice.  As a consequence of these two problems, my own assessment is that
HMMs, while clearly of considerable practical interest, are still not the holy grail of
sequence analysis methods that I had once thought they might be.

Where do we go from here? (reprise)
Of the five “grand challenges” I posed in 1995, only the first—real-time

forecasting—has been implemented.  That one has seen considerable success, although
many of the applications are largely hidden behind the veil of security classification.
Nonetheless, all indications are that the neural network models developed for the State
Failures Project have been used for on-going monitoring; I have every reason to believe
(based on a number of conversations with individuals who have no reason to want to
impress or deceive me) that hidden Markov models are being used at least
experimentally, and there is at least one published academic effort (Pevehouse and
Goldstein 1999) to this effect, albeit using statistical methods.

The real-time forecasting efforts are likely to continue due to a combination of the
potential utility of the method, and the now readily-available dense, contemporaneous
event data sets produced with automated coding systems in combination with machine-
readable newswire reports on services such as NEXIS, FBIS, and Factiva, all easily
accessible at North American research universities.  While this methodology existed in
1995, it had yet to gain full legitimacy in the academic community, a situation that has
now changed. These new event data sets provide far greater detail than the older, human-
coded WEIS and COPDAB sets used in the studies in this book, and also have the
potential of providing easily customized coding frameworks that can be optimized for
special problems.  In 1995, I was impressed that these methods could code 15 events per
second—quite an improvement over the human coding norms of six to ten events per
hour—but coding speeds for TABARI are now on the order of 10,000 events per second.
While the various coding programs are straightforward applications of natural language
processing methods, the automated coding systems are, in a sense, “artificial intelligence”
in that they are substituting computational methods to do a task once done by humans.

To a much more limited extent, there has been some progress on the simulation of
international behavior through agent-based models.  The agent-based modeling approach
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in general has taken off (Axelrod 1997; http://www.econ.iastate.edu/tesfatsi/ace.htm),
complete with its own journal (http://jasss.soc.surrey.ac.uk/JASSS.html) and IR-oriented
applications of the approach have made it into the APSR (Cederman 2003).  I also have
the impression—albeit I make this assertion with far less confidence than what I said
about forecasting, being much further from the field—that serious experimentation has
been done in the policy community with the method.  However, it is certainly not
mainstream: again, the cost of entry—computer programming—remains high despite the
availability of multiple well-developed software suites for agent-based modeling.

Little or no progress has been made on the remaining three challenges, and the
barrier in all three cases is largely the same: insufficient progress in semantic natural
language processing. Nonetheless, as ever-greater amounts of natural language materials
become available on the web, and as ever more clever methods are found for making use
of that material, we may yet see progress. In particular, the U.S. government appears to
be once again getting serious about funding systematic social science research related to
international conflict, after a nearly two-decade absence, and this might provide the
resources needed to tackle these difficult problems.

The capacity of computing power continues to climb exponentially, with limits still
barely in sight.  What seemed in 1995 to be a phenomenal increase in power over the
Apple II of 1980 has been equally dwarfed by subsequent developments.  As anticipated
in Chapter 7, the latest generation of Apple computers,3 the G5 series, was in fact
advertised (with justification) as a supercomputer, and—contrary to Apple’s
advertising—comparable power is available in Intel systems.  As I write this, the Sunday
paper is advertising an Intel-based computer with a 32-bit 2.7 Ghz processor, 256 Mb
RAM, 40 Gb hard drive machine for only $370, less than 1% of an assistant professor’s
salary.

The emergence of the open-source software movement (which both drives and is
driven by the World Wide Web, an institution which barely existed when the manuscript
was first completed) and the consolidation of operating environments to two
systems—Microsoft’s Windows and the Unix variants of everyone else—has made
software far more accessible to programmers, though tools have yet to emerge (despite
continual promises) that make programming any easier for computational tools.4  The
plummeting cost of high-capacity off-the-shelf hardware has opened up the possibility of
massively parallel systems—usually driven by the Unix-based Beowulf system—at a
fraction of the cost of the older “supercomputers”.

The proposition that increased computing power alone will make a difference is
still controversial.  Part of this is probably a function of simple pride—we no more want
our intellects to be displaced by mere machines (even machines our intellects brought
into being) than old John Henry wanted to be replaced by that steam drill—but for the

                                                  
3  Even more remarkable is that a quarter-century after I did the first analysis on an Apple II, I’m still
writing this on an Apple computer—a G5 in fact—despite Apple’s organizational near-death-experience in
the mid-1990s and the continuing fervent desire of the University of Kansas computer “support” that all
Macintoshes would go away and we would all bow before the sacred—if virus-ridden—altar of Microsoft.
4  This despite the fact that such tools probably could be created.  For example, in my experience, the perl
programming language reduces the size of text processing programs by at least a factor of ten compared to
their C/C++ equivalents; Gauss and Mathematica perform a similar task for algorithms dependent on
matrix operations.
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time being, it can also be quite legitimately contested on the grounds that nothing has
been demonstrated.

But the issue may still be open, and there are at least two instances where increased
power has made a qualitative difference.  Gary Kasparov was finally defeated in chess by
fast hardware, not fancy programming, and the current Bayesian revolution in statistical
methodology is primarily fueled by the fact that finally we can estimate the darn
equations; the theory of Bayesian statistical estimation having been around since the
1950s.  There are at least two issues in computation modeling of political behavior that
clearly require massive computing power—semantic content analysis and partially-
ordered event sequence recognition—and it is possible that further increases in power,
combined with some supporting algorithms, will result in breakthroughs in those areas.
Increased power could also simplify the application of existing computationally-intensive
methods such as neural networks and cluster analysis, but these are already accessible
with existing hardware and software to all but the most impatient analysts, and do not
appear to be catching on.
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