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Abstract

This paper presents research into conflict analysis, utilizing Hidden

Markov models to capture the patterns of escalation in a conflict and Markov

chains to forecast future escalations. Hidden Markov models have an extensive

history in a wide variety of pattern classification applications. In these models,

an unobserved finite state Markov chain generates observed symbols whose

distribution is conditioned on the current state of the chain. Training algorithms

estimate model parameters based upon known patterns of symbols. Assignment

rules classify unknown patterns according to the likelihood of known models

generating the observed symbols. The research presented here utilized much of

the Hidden Markov model methodology, but not for pattern classification, rather

to identify the underlying finite state Markov chain for a symbol realization.

Machine coded newswire story leads provided event data that served as the

symbol realization for the Hidden Markov model. Fundamental matrices

derived from the Markov chain led to forecasts that provide insight into the

dynamic behavior of the conflict and describe potential futures of the conflict in

probabilistic terms, to include the likelihood of conflict, the time to conflict, and

the time in conflict.
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Introduction

“AMarkov chain model appears as a particularly appropriate format for

analyzing conflict behavior. First, it operates naturally over time-it is a dynamic

model. Second, it allows for flexibility in the definition of states of conflict,

thereby broadening the class of models that may be considered. Third, various

theoretical conceptualizations of conflict imply certain constraints on the form of

the transition probabilities and hence can be empirically tested using statistical

methods (Duncan and Siverson,353).”  Despite this cogent argument, made 

nearly twenty years ago, the conflict analysis community has only sparingly

utilized Markov models. This paper attempts to reintroduce these models, which

have not appeared in the literature in more than four years, to the community.

First, I review the history of Markov models in the literature over the last two

decades. Second, I discuss both Markov chains and Hidden Markov models,

providing a general overview of their structures and applications. Third, I

propose a new methodology for conflict analysis that utilizes both Hidden

Markov models and Markov chains to forecast conflict. I then apply this

methodology to the Israeli-Palestinian conflict, forecast the likelihood of conflict,

the time to conflict, and the time in conflict for several periods of the conflict’s 

history, and validate these forecasts.

Previous Applications

Conflict analysis with Markov chains has waxed and waned over the last

40 years. Wilkenfeld and Zinnes (1973) studied the effect ofa country’s foreign 
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conflict behavior on its domestic conflict behavior with transition matrices.

Duncan and Siverson (1975) utilized ergodic chains to model Sino-Indian

relations from 1959-1964. Schrodt (1976) proved that one could derive the

deterministic Richardson model as the expected value of an ergodic Markov

chain with the Chapman-Kolmogorov equations. Ross (1978) suggested the use

of Markov chains in modeling guerrilla warfare. Geller (1987) compared

probability patterns of domestic political conflict in nations with different system

structures.  Geller (1990) claimed to use “Markov analysis” when researching the 

effect of nuclear capabilities of the antagonists in crisis escalation, referring to

2x3 contingency tables as “Markov Matrices”(Markov matrices are by definition

square). Geller (1993) later tested several hypotheses regarding the conflictive

behavior of a rival dyad with Markov chains. Schrodt (1998, 2000a, and 2000b)

applied Hidden Markov models to event data collected from the open press to

classify patterns of behavior between nation states that led to conflict. He applied

the Hidden Markov methodology to: (1) measure similarities in crises in the

Middle East (1998), (2) forecast conflicts in southern Lebanon (2000a), and (3)

forecast conflicts in the Balkans (2000b).

Markov Chains

The stochastic process Xt = {Xt : t  0, 1, … } with finite state space Σ is a 

Markov chain provided that the conditional distribution of any future state Xt+1 is

independent of all past states given the present state Xt, or equivalently
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The Markov chain is time homogeneous, if P(Xt+1 = j | Xt = i) is independent of t,

in which case define pi,j = P(Xt+1 = j | Xt = i). These conditional probabilities

represent the probability of a state transition from state i to state j. The transition

matrix, P={pi,j}, represents the probability of moving from state i to state j in one

transition. Multi-step transition probabilities, denoted by pki,j, represent the

probability of moving from state i to state j in k transitions. State-transition

diagrams graphically portray the states and transition probabilities of a Markov

chain. Circles represent the states that make up the state space of the model.

Arcs represent the one-step transition probabilities, the pi,j, from neighboring

states. Figure 1 displays an n state Markov chain.

Figure 1

Mathematicians classify states in a Markov chain dependent upon whether it is

possible to move from one state to another. Define T as the time until the next

visit to state j. State j is accessible from state i if pki,j > 0 for some k transitions in

the future. States i and j communicate if both are accessible to one another.

States that communicate are in the same if there is only one class among the
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states. Assume the process is currently in state j. State j is recurrent if T < 

with probability one, i.e. the process will eventually return to state j. State j is

transient if the probability that T = +is nonzero, i.e. it is possible for the

process to never again return to state j. State j is absorbing if pj,j = 1, i.e. the

probability of remaining in the state after entering is one. Time homogeneous

Markov chains display predictable behavior in the long term, allowing for the

forecasting of potential state futures. Forecasts of these behaviors include the

distribution of the number of transitions into a state, the distribution of the

number of transitions until absorption (assumes one absorbing state), the

probability of absorption into an absorbing state (assumes two absorbing states),

and the mean percentage of time in a state (assumes an irreducible chain). These

forecasts readily avail themselves to likelihood of conflict, time to conflict, and

time in conflict interpretations when the states model the spectrum of conflict.

Number of transitions into a state. Define nj as the number of times

that the process is in state j. Define Fk(i,j) as the probability of reaching state j in

k transitions, starting in state i, i.e.,

Summing Fk(i,j) over all k provides the probability of ever reaching state j,

starting from state i, i.e.,
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The probability mass function of nj is then

(Çinlar, p. 121-123).

Number of transitions until absorption (time to conflict).

Assume a chain with one absorbing state. Define d as the number of transitions

(time) that the process passes through, given an initial position at state i, before

absorption. The probability mass function for this discrete distribution is

geometric, as d counts the number of transitions through transient states

(failures) until absorption in the one absorbing state (success), i.e.,

(Mazzuchi, 2003). The interested reader will find derivations for the means and

variances of the above motivated distributions in both Çinlar (1975) and Kemeny

(1976).

Probability of absorption (likelihood of conflict). Assume a chain

with two absorbing states. Define C as the set of absorbing states in the Markov

chain with Cj as absorbing state j. Define D as the set of transient states. Define

B as the probability of moving from transient state i to an absorbing state j.

Define Q(i,j) as the matrix obtained from P(i,j) after removing all recurrent

states, i.e. Q(i,j) is the transition matrix amongst the transient states. Define Bn
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as the probability of absorption into absorbing state j from transient state i within

n transitions. Bn can then be written as a function of Q and B.

Taking the limit of Bn as n→∞yields the probability of absorption into absorbing

state j from transient state i.

(Çinlar, p. 144-149).

Percentage of time in a state (time in conflict). Assume an

irreducible Markov chain. The limiting probabilities of the transition matrix

converge as n exist and are independent of the current state of the chain.

The value of this limit for state j, j, is the unique solution to the following system

of linear equations.

(Ross, p. 173-174). Çinlar provides a more thorough proof and also proves the

uniqueness of the solution (Çinlar, p. 152-153).
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Hidden Markov Models

A Hidden Markov model consists of two embedded stochastic processes,

Xt and Yt, with state space . Xt is an n state, time homogeneous Markov

chain with state space and an unobservable (hidden) realizationσ. The initial

state probability distribution, , describes the likelihood that X1 is in one of the n

states. The transition matrix, P={pi,j}, describes the likelihood that Xt moves

from state i to state j. Yt is an m state, discrete stochastic process conditionally

distributed on Xt alone with state space and an observable realization . The

elements of are termed observations and assumed independent. The

observation symbol matrix, O={oi,j}, describes the likelihood that Yt generates

symbol j given that Xt is in state i. Figure 2 displays an n state, m symbol Hidden

Markov model.

Figure 2

Due to the dependence between Xt and Yt, the realization , although hidden, can

be inferred from . Complete description of the model requires specification of
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the three distributions (, P, and O). Parameter estimation is conducted with the

Baum Welch algorithm, a recursive maximum likelihood estimation technique.

Another algorithm, the Viterbi algorithm, estimates the most likely state

sequence, given the model. In general pattern classification, several Hidden

Markov models (referred to as templates) are trained with observation sequences

from known classes, and future observation sequences are classified according to

the template which was most likely to generate the observed sequence.

Likelihood of an Observation Sequence. The likelihood of a given

observation sequence, P(|), is determined through the use of the forward

variable, t(i). Define t(i) as the probability of observing the partial (t<T)

observed realization = (Y1(), Y2(), … Yt()) and having (Xt = i), given the

model , i.e.,

To determine 1(i) for all t, initially determine 1(i), inductively solve for t+1(i)

for each t, and finally calculate P(|) as a function of t(i). For t=1, calculate

1(i) as the conditional probability of Y1 generating Y1() and X1 in state i given

the model or equivalently as the product of the i, 1 element of the observation

symbol matrix and the ith element of the initial state probability distribution of Xt.
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For t>1, calculate values of t(i) recursively as the conditional probability of

observing all Yt() from Y1() to Yt+1() andX1+1 in state j given the model or

equivalently as the product of the product of the sum of the probabilities of all n

possible paths from t(i) to t+1(j) and the probability of Xt transitioning to state j

from state i and the j, Yt+1() element of the observation symbol matrix.

Calculate the probability of the observed realization given the model as the sum

of the final T(i) over all n states of Xt.

(Rabiner, 262).

Baum-Welch algorithm. Define the backwards variable, t(i), as the

probability of observing the partial realization = (Yt+1(), Yt+2(),, … YT())

with (Xt = i), given the model .

Arbitrarily assume T(i) to equal one for all i and then inductively solve for t(i).
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For t<T, calculate values of t(i) recursively as the sum of the products of the

probability of Xt transitioning to state j from state i, the probability of Yt

generating t+1 given Xt in state j, and t+1(i) (Rabiner, 263).

Define t(i,j) as the probability the process Xt is in state i at time t and state

j at time t+1, given the complete observed realization = (Y1(), Y2(), … YT())

and the model , i.e.,

Define t(i) as the probability of the process Xt being in state i given the

observation sequence, , and the model, , i.e.,

The sum of t(i) over time equates to the expected number of times that Xt visits

state i, or equivalently, the expected number of transitions from state i (excluding

t = T from the summation). The sum of t(i,j) over time equates to the expected

number of times that state j is visited from j, or equivalently, the expected

number of transitions from state i to state j (Rabiner, 263).
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Given a fitted model = (P, O, ), utilize the formulas above to re-estimate

the parameters of the model, . Baum et al (1966) showed that either defines a

critical point in the response surface of the likelihood function, i.e., = , or m

model is more likely than model , i.e., P(|) > P(|).

Iteratively use in place of and repeat the re-estimation procedure, improving

on P(|) until some limiting point is reached. This final result is a maximum

likelihood estimate for (Rabiner, 265).

Viterbi algorithm. The Viterbi algorithm determines the most likely

state realization = (X1(), X2(),  …, XT()) given the model and an observed

realization = (Y1(), Y2(), … YT()). Define t(i) as the highest probability of

an observed realization that ends in state i at time t, given the first t

observations, i.e.,
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Define t(j) as the state j at time t that maximizes the product of the likelihood of

the state realization up until time t-1 and the probability of a state transition to

state j at time t. Initially solve for 1(i) and 1(i).

The likelihood of a single observation realization from state i equals the product

of the probability of starting in state i and the probability of generating the

observation given state i. Recursively solve for subsequent values of t.

The likelihood of an observation realization up to time t equals the product of the

maximum likelihood the realization up to time t-1, with a state transition from

state i to state j, and the probability of the observation at time t from state j.

Define r* as the probability of the state realization with maximum likelihood and

s*T as the state i that maximizes the likelihood of the state realization.

Recursively determine the most likely state realization backwards from s*T to s*1

with t(j)
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(Rabiner, 264). Rabiner (1989) provides an excellent tutorial on the application

of Hidden Markov models to real processes. See McDonald and Zucchini (1997),

Duda (2001), and Theodoridis and Koutroumbas (2003) for more detailed

examinations of these algorithms and Hidden Markov models in pattern

classification.

Proposed Methodology

Concept. I utilize Hidden Markov models with event data, but not in the

classical pattern classification approach taken by Schrodt. Rather, I make use of

the maximum likelihood techniques motivated by Baum et al (1966, 1970) for

Hidden Markov model parameter estimation in order to estimate the parameters

of the underlying finite state Markov chain. I then make inferences from the

chain to describe potential futures in probabilistic terms. I execute this

methodology in six phases.

1. Obtain event data for a specific conflict.

2. Hypothesize an n-state, m-symbol Hidden Markov model, based

upon a spectrum of conflict model.

3. Obtain initial parameter estimates for the model, required for the

Baum-Welch estimation algorithm, from a subject matter expert.
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4. Estimate the parameter values with the Baum-Welch algorithm and

the most likely state sequence with the Viterbi algorithm.

5. Forecast the likelihood of conflict, the likelihood of conflict, and the

time in conflict from the underlying finite state Markov chain.

6. Validate the model by comparing time to conflict forecasts with the

Viterbi sequence times to conflict.

Data. I selected the Israeli-Palestinian conflict for analysis with the new

methodology. The Israeli-Palestinian conflict dates back to initial Arab protests

of Jewish setters in 1891 and continues to the present time. The data set for the

dyad was obtained from the KEDS project Levant data set. The data set contains

27,679 events between the Israelis and Palestinians from 1979 to 2003, coded

daily according to the WEIS protocol. Three distinct periods of conflictive

activity appear in the WEIS scores: termed pre-Intifada (1979-1987), 1st Intifada

(1988-1998) period, and 2nd Intifada (2001-2003). Training data sets and

testing data sets were identified within each of these three periods. The training

set for the pre-Intifada ran from April 1979 to August 1983. The test set for the

Pre-Intifada ran from August 1983 to November 1987. Both data sets contained

1572 data points. The training set for the 1st Intifada ran from January 1988 to

July 1993. The test set for the 1st Intifada ran from July 1993 to December 1998.

Both data sets contained 1998 data points. The training set for the 2nd Intifada

ran from August 2001 to August 2002. The test set for the 2nd Intifada ran from

August 2002 to July 2003. Both data sets contained 357 data points.
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Model. I selected a five-state, five-symbol model as an appropriate multi-

state conflict model for the dyad.  I derived the states from Michael Lund’s 

Spectrum of Conflict model (Lund, p. 39). Lund hypothesized that the spectrum

of conflict contains five states: enduring peace–a state that involves a high level

of reciprocity and cooperation with a virtual absence of self-defense measures

among parties; stable peace - a state of wary communication and limited

cooperation; unstable peace - a state of tension and suspicion among the parties

with at most sporadic violence; crisis–a state of confrontation between forces

that are mobilized and ready to fight and may engage in threats and occasional

low-level skirmishes but have not exerted any significant amount of force; and

war–a state of sustained fighting between organized armed forces. These states

differ according to the level of animosity and the level of violence within the dyad.

I made three modifications to Lund’s model.  First, I dropped the state of 

enduring peace, as the Israeli-Palestinian dyad has clearly never entered this

state. Second, I added an additional state: threatened peace–a state with at

most sporadic violence but where both sides perceive the other as enemies. I

added this state to more fully capture the dyad’s states of conflict.  I placed this 

new state between unstable peace and crisis. Third, I renamed the fifth state war,

to conflict, to avoid misunderstandings as to what the methodology forecasts.

The five-states of the model then take the following form: 0 - stable peace; 1 -

unstable peace; 2 - threatened peace; 3 - crisis; and 4 - conflict. I took the five

symbols from conflict pattern classification work done by Schrodt (2000b). In

his early efforts in identifying patterns of conflict, Schrodt based the Hidden

Markov models symbols upon the 22 WEIS scores and added a 23rd symbol for
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non-events. He later found that he incurred little increase in classification error

when he consolidated the 22 WEIS symbols into four symbols: physical

cooperation, verbal cooperation, verbal confrontation, and physical

confrontation.  Occam’s razor argues for the more parsimonious model since 

entia non sunt multiplicanda praeter necessitatem– “entities are not to be

multiplied without necessity”.  The five-symbols of the model then take the

following form: 0–no event; 1–physical cooperation; 2–verbal cooperation; 3

–verbal conflict; and 4–physical conflict. The use of the five-symbol model

necessitated a transformation of the data set. First, the event codes from the 23

symbol WEIS scores were mapped into the appropriate five symbol scores,

termed modified WEIS in this research. Second, since a large number of days

had multiple events, the events were aggregated (mean score rounded up) daily

in order to allow the forecasts made from the model to have a temporal

interpretation. The resulting data set had 8,872 events.

Forecasts. Three models were fit, one for each period. The training data

set for each was used to estimate the model parameters. The precision required

for stopping the recursion was set at 0.01, i.e. the algorithm continued to re-

estimate the parameters until the sum of the twenty-five differences between

corresponding elements of the last and next transition matrices failed to exceed

0.01.  After estimating the Hidden Markov model’s parameters, the underlying 

five-state Markov chain was analyzed in order to forecast the dyad’s potential 

futures. Figure 3 displays the underlying Markov chain.
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Figure 3

Determination of the likelihood of conflict required the assumption that the first

state (stable peace) and the last state (conflict) in the final transition matrix were

absorbing. Under this assumption, the process is eventually absorbed into one of

these extreme states, as the other three are transient. The likelihood of the

process being absorbed into the first state equates to the likelihood of the dyad

entering the state of stable peace before conflict. The likelihood of the process

being absorbed into the last state equates to the likelihood of the dyad entering

the state of conflict before stable peace. Therefore, the probabilities of absorption

into each of the two extreme states, given an initial position in one of the

transient states, were calculated. Determination of the time to conflict required

the assumption that the last state (conflict) in the final transition matrix was

absorbing. Under this assumption, the process is eventually absorbed into the

last state, as the other four are transient. The number of transitions in a

realization of the process resulting in absorption into the last state equates to the

time taken by the dyad to move into a state of conflict. Determination of the time

in conflict required the assumption that the transition matrix will remain

constant for the foreseeable future. Under this assumption, Pni,j converges to

limiting probabilities for each j as n . These limiting probabilities equal the

S1 S5S4S3S2

stable
peace

conflictthreatened
peace

unstable
peace

crisis

S1 S5S4S3S2S1 S5S4S3S2

stable
peace

conflictthreatened
peace

unstable
peace

crisis



19

proportion of the time that the dyad will spend in each state j. Therefore, the

limiting probabilities for each j were calculated. Figure 4 displays the three

forecasts for each time period.

Figure 4

Intifada Period

Forecasts Pre 1st 2nd

Likelihood of
Conflict [%] 1

Unstable Peace 3 8 33
Threatened Peace 9 37 63
Crisis 35 91 85

Time to
Conflict [days] 2

Stable Peace 165 53 18
Unstable Peace 164 52 17
Threatened Peace 155 37 13
Crisis 112 7 7

Time in
Conflict [%] 3

Stable Peace 24 18 7
Unstable Peace 48 32 20
Threatened Peace 16 8 23
Crisis 3 25 34
Conflict 9 17 16

1 Likelihood that the process will enter the state of conflict be fore stable
peace from the given state for the given period.

2 Mean number of days that the process will take before entering
conflict from the given state for the given period.

3 Percentage of the time that the process will spend in each of t he five
states for the given period.
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Validation

General. The validation of a statistical forecasting model typically

consists of comparing a model’s forecasts with actual data.  This approach proved 

impossible with the model presented here in that one cannot compare forecasted

states with actual states that are “hidden.”  Instead, I compared the forecasts

against the most likely state sequence, the Viterbi sequence. This approach

created its own set of difficulties: (1) it favorably biases the validation as the same

model that produced the forecasts also produced the Viterbi sequence; and (2)

the validity of the Viterbi sequence remains questionable. I could not remove the

bias in the validation and one should view the validation of the forecasts with this

fact in mind. I could address the validity of the Viterbi sequence and did so with

a face validation of the sequence against known historical trends.

Viterbi Validation. How then to validate the Viterbi sequence?

Statisticians working with linear regression models typically graph the estimated

regression line over the data as a diagnostic tool to visually validate the linear

model. A similar approach is available for the Viterbi sequence and real events.

Although the past states are hidden, subject matter experts would typically agree

on whether a conflict experienced escalation or de-escalation during significant

historical periods. Several significant events in the Israeli-Palestinian conflict

were identified and then plotted on the Viterbi sequence for comparison. Figure 5

displays these significant events plotted on the Viterbi sequence (The year

markers designate the middle of each year. The state sequence scores were

exponentially smoothed to display the trends in the sequence).
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Figure 5

Marker ‘a’ denotes the First Intifada, beginning in December 1987 and slowly

fading in intensity some time in 1991. The uprising began with demonstrations,

strikes, and other forms of civil disobedience. Violence increased as the Intifada

continued. Escalating conflict brought barricades and stone throwing into the

Intifada. Israel arrested many of the leaders of the various Palestinian resistance

groups, ending the cohesive force of the Intifada by 1991. The Viterbi sequence

captured these trends. The sequence corresponds with the early rise in conflict

that accompanied the Intifada, the sustained level of conflict during the end of

the 1980s, and the decline in conflict leading to the end of the Intifada in 1991.

Marker ‘b’ denotes the various efforts in the peace process from 1993-1999 (Oslo

I - 1993, Oslo II - 1995, Wye River I - 1998, and Wye River II–1999). Following

the Gulf War the Israelis and Palestinians entered a series talks with the goal of
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settling the conflict. The region experienced sporadic outbursts of violence

during this period as extremists on both sides attempted to derail the peace

process. The Viterbi sequence corresponds with the volatile nature of the Israeli-

Palestinian relationship during this period. The sequence oscillates between

unstable peace and conflict, with longer stays in the latter.   Marker ‘c’ denotes 

the Camp David II talks that occurred in July 2000. Both populations

experienced initial optimism for the talks as news leaked of the Israeli’s softening 

of several positions. This optimism led to a decrease in violence in the region.

The failure of the two sides to reach a compromise after two weeks of talks again

halted the peace process. The Viterbi sequence corresponds with both the de-

escalation of conflict during the lead up to and during the talks and the escalation

of conflict following the end of the talks.  Marker ‘d’ denotes the Second, or Al-

Aqsa, Intifada. This second Intifada began shortly after the collapse of the Camp

David II talks. Both sides argue as to what caused the return to violence, but the

violence itself is not debated. Both the Israelis and the Palestinians quickly

employed greater force than in the first Intifada and have continued to maintain

a high level of violence through 2003 (end of the data set). The Viterbi sequence

also corresponds with this increased and sustained level of violence.

Model Validation. Assuming that the Viterbi sequence represented the

true state sequence, I then compared the forecasted mean times to conflict

(arguably the most interesting of the forecasts) from stable peace, unstable peace,

threatened peace, and crisis, to the actual mean times from each of these states in

the Viterbi sequence. Figure 6 displays the comparisons across the three periods.
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Figure 6

The Pre-Intifada time to conflict forecasts closely approximated the Viterbi

sequence values. The forecasts underestimated the times to conflict from stable

and unstable peace, while overestimating the times from threatened peace and

crisis. The 1st Intifada time to conflict forecasts overestimated the Viterbi

sequence values. The Viterbi sequence never entered stable, unstable, or stable

peace during the 2nd Intifada period. Accordingly, I could only compare the

forecasted time to conflict from the state of crisis to the Viterbi sequence. The

Intifada Period

Validation Pre 1st 2nd

Forecasted Time to
Conflict [days] 1

Stable Peace 165 53 18
Unstable Peace 164 52 17
Threatened Peace 155 37 13
Crisis 112 7 7

Viterbi Time to
Conflict [days] 2

Stable Peace 221 21 n/a
Unstable Peace 220 20 n/a
Threatened Peace 140 20 n/a
Crisis 66 3 3

1 Mean number of days that the process will take before entering
conflict from the given state for the given period.

2 Mean number of days that the Viterbi sequence took before
entering conflict from a given state for the given period.
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forecast overestimated the time to conflict. Despite the differences between the

forecasts and observed mean number of days to conflict, all of the observed times

fell within one standard deviation of the forecasted means.

Conclusion

This paper has presented a novel methodology for modeling conflict

escalation: utilizing Hidden Markov models with event data to model a conflict,

identifying the underlying finite state Markov chain, and then making forecasts

regarding the conflict from this Markov chain. Application of this methodology

to the Israeli-Palestinian conflict produced favorable results. The forecasts used

to describe the conflict’s potential futures, when generated from training sets and 

compared to test sets, appear valid. The Israeli-Palestinian conflict has

undergone three increasingly conflictive phases since 1979. The model captured

these three with forecasts that reflect this increased level of conflict. The

likelihood of conflict and the time in conflict forecasts increased across the three

periods. The time to conflict forecasts decreased across these periods. The

Israeli-Palestinian conflict has also displayed great variability in the level of

violence experienced during each period. The model captured this variability in

the forecasts. The hidden nature of the actual states created difficulties in

validating the model. The Viterbi sequence provided a realization of most likely

future states in the test sets for validation of the forecasts, but lacked validity in

that the sequence is a function of the model. A comparison of the sequence with

known events and general trends from the conflict’s history provided face 

validation for the sequence. The time to conflict forecasts appear valid as all of
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the Viterbi sequence mean times to conflict fell within one standard deviation of

the forecasted mean times to conflict.

References

Baum, L.E., and T. Petrie. 1966. Statistical Inference for Probabilistic Functions

of Finite State Markov Chains, Annals of Mathematical Statistics, No 37, 1554-

1563.

Baum, L.E., T. Petrie, G. Soules, and N. Weiss. 1970. A Maximization Technique

Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains,

Annals of Mathematical Statistics, No 41, 164-171.

Çinlar, E. 1975. Introduction to Stochastic Processes. Prentice Hall.

Duda, Richard O., Peter E. Hart, and David G. Stork. 2001. Pattern

Classification. Wiley-Interscience.

Duncan, G. and R. Siverson. 1975. Markov Chain Models for Conflict Analysis:

Results from Sino-Indian Relations, 1959-1964, International Studies Quarterly,

No 19, 344-374.



26

Geller, Daniel S. 1987. The Impact of Political System Structure on Probability

Patterns of Internal Disorder, American Journal of Political Science, No 31, 217-

235.

---. 1990. Nuclear Weapons, Deterrence, and Crisis Escalation, Journal of

Conflict Resolution, No 34, 291-310.

---. 1993. Power Differentials and War in Rival Dyads, International Studies

Quarterly, No 37, 173-193.

Kemeny, J. and L. Snell. 1976. Finite Markov Chains. Van Nostrand.

Lund, M. 1996. Preventing Violent Conflicts. Institute of Peace Press.

MacDonald, Iain L. and Walter Zucchini. 1997. Hidden Markov and Other

Models for Discrete-valued Time Series. Chapman and Hall.

Rabiner, Lawrence R. 1989. A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition, Proceedings of the IEEE, No 77, 257-286.

Ross, D.S. 1978. Elementary Process Models: Their Place in International

Relations Forecasting, in Forecasting in International Relations: Theory,

Methods, Problems, and Prospects. Eds. N. Choucri and T.W. Robinson. W.H.

Freeman.



27

Schrodt, P.A. 1976. Richardson’s Model as a Markov Process, in Mathematical

Models in International Relations. Eds. D. Zinnes and J. Gillespie. Praeger.

---. 1998. Pattern Recognition of International Crises Using Hidden Markov

Models, in Non-linear Models and Methods in Political Science. Ed. D. Richards.

University of Michigan Press.

---. 2000a. Early Warning of Conflict in Southern Lebanon using Hidden

Markov Models, in Political Complexity: Nonlinear Models of Politics. Ed. D.

Richards. University of Michigan Press.

---. 2000b. Forecasting Conflict in the Balkans using Hidden Markov Models.

Presented at the American Political Science Association meetings, August 2000.

Washington, DC.

Theodoridis, Sergios and Konstantinos Koutroumbas. 2003. Pattern

Recognition. Academic Press.

Wilkenfield, Jonathan and Dina A. Zinnes. 1973. A Linkage Model of Domestic

Conflict Behavior, in Conflict Behavior and Linkage Politics. Ed. Jonathan

Wilkenfield. David McKay.


