
Forecasting Conflict
Lecture 5

Machine Learning and Sequence-based
Approaches

Philip A. Schrodt

Parus Analytical Systems
schrodt735@gmail.com

Graduate School of Decision Sciences
University of Konstanz
14 - 17 October 2013

Overview

I The Lure of Sequence and Trigger Models

I Cluster-based approaches
I Logic of nearest neighbor approaches
I K-Means and its neighbors
I Dendograms
I Support vector machines
I Correspondence analysis

I Other Machine-Learning Methods
I Classification Trees and Random Forests
I Genetic Algorithms
I Neural networks

I Sequence Models
I Hudson, Schrodt and Widmer: Rule-based approaches
I Sequence Comparison: Levenshtein Metric
I Hidden Markov models and Conditional Random Fields

Methods of Modeling

Classical (“frequentist”) statistics

I Objective is determining whether a variable has a non-zero
effect: “significance tests”

I Effective in experimental and other randomized settings,
but generally useless for predictive models

Bayesian statistics

I Objective is determining a probability of the impact of a
variable based on your prior knowledge and the new data

I Corresponds to how most people actually think about data
but has only become computationally feasible in the past
twenty years

Machine Learning

I Very flexible methods of determining relationships

I Robust with respect to loosely structured data

I Problem: No [widely accepted] theory of error

Distinctions between statistical and machine learning
approaches-1

I Focus on out-of-sample validation, not standard error of
coefficients

I Out-of-sample is also needed because of the danger of
overfitting

I Collinearity is an asset, not a liability

I Assumption—and exploitation—of heterogeneous
subpopulations

I Missing values can be data

I Sparse datasets: most indicators are not measured on most
cases

Distinctions between statistical and machine learning
approaches-2

I Non-linear, and consequently the cases>>variables
constraint need not apply

I Diffuse knowledge/coefficient structures: VAR, BMA,
neural networks, random forests, and HMM/CRF

I ML methods are frequently just the application of a
“common sense” algorithm, whereas statistical approaches
often require detailed mathematical derivations and the
properties may be dependent on unrealistic—or
unknowable—properties of the data

The Lure of Sequence and Trigger Models

I Kahneman/Tetlock: pattern recognition

I Case-based reasoning

I People—as in “me”—have been working with these for
about thirty years without getting a lot of traction.
However, we may not have had sufficient detail in the past

Upshot: the only way we are going to know if these are real is if
we can train a machine to do this. We may not be able to.

Machine Learning I: Cluster analysis

Objective: Determine clusters of cases that are similar to each
other based on their feature vectors

I Discriminant analysis

I Nearest neighbor methods—K-Means, KNN

I Support vector machines

Result: Cases can be clustered in groups that have credible
substantive interpretations

Machine Learning II: Classification algorithms

Objective: identify the characteristics of cases that are most
useful in differentiating them into categories that have been
specified a priori

I Decision trees: ID3, C4.5

I Random forestsTM

I Neural networks
I These did not work in the State Failures Project but in

general are a useful “Big Data” tool, so it is [very] possible
that they were simply implemented badly

Result: Cases can be used to classify cases into a
pre-determined set of categories

Machine Learning III: Sequence algorithms

Objective: identify the characteristics of cases based on the
sequence of events. This attempts to mimic the “episodic
memory/recognition” that appears to be hard-wired in humans,
but also is similar to methods used in biological and linguistic
pattern recognition

I rule-based models

I Levenshtein metric

I hidden Markov models and conditional random fields

I biological sequence recognition

Result: Case can be compared explicitly as sequences and those
comparisons can be used, typically as distance metrics, in other
methods

Available software

R

Very conveniently, R has emerged as a very common tool in
machine learning. Even when it doesn’t necessarily make sense.

Weka Project

Weka features

Source: http://en.wikipedia.org/wiki/Weka (machine learning)

Weka Project: Data Mining

Python: scikit-learn

Source: http://scikit-learn.org/stable/

Clustering approaches

General comments

I Requires a metric—and there are many—for the distance
between the cases

I In contrast to linear approaches this assumes
heterogeneous subpopulations

I Clustering is typically depicted in two dimensions but
usually is computed in an arbitrarily large space

Cluster Example 1

Exercise: search Google images for “cluster analysis” for a
zillion examples

Cluster Example 2

[this had something to do with herpetology, perhaps explaining
the importance of “road crossings”]

Intuitive Clustering

Diagrams from Michael Levitt, Structural Biology, Stanford
Source:
http://csb.stanford.edu/class/public/lectures/lec4/Lecture6/Data Visualization/images/Intuitive Clustering.jpg

Overview of distance metrics

Source:
http://www.improvedoutcomes.com/docs/WebSiteDocs/Clustering/Clustering Parameters/Distance Metrics Overview.htm

K-Means

Source:
http://csb.stanford.edu/class/public/lectures/lec4/Lecture6/Data Visualization/images/K-
Means Clustering.jpg

K-Means algorithm

Source: http://biology.unm.edu/biology/maggieww/Public Html/K-means.gif

K-Means: Issues

I Results vary depending on the number of clusters

I Results vary depending on the random starting points: one
approach is to do a number of these and see which clusters
consistently emerge

Hierarchical Clustering

Source:
http://csb.stanford.edu/class/public/lectures/lec4/Lecture6/Data Visualization/images/Hierarchical Clustering.jpg

Comparison Strategy

I Words that are similar should co-occur in topics more

frequently

I For a pair of ‘top-words’, let their similarity-weight be

equal to:

I No. of times that the pair appears within all ‘top-word’

vectors

I Distance between two vectors:

I A constant minus the sum of the similarity-weights for

word-pairs that occur across the two ‘top-word’ vectors

Comparing Topics: Combined Sample

D
ip
lo
m
ac
y

N
eg
ot
ia
tio
n

E
co
n-
C
oo
p

D
em
oc
ra
cy

M
ed
ia

D
ip
lo
m
ac
y

P
ar
lia
m
en
t

E
le
ct
io
n

C
om
m
en
ts

C
er
em
on
y

P
ar
lia
m
en
t

N
uc
le
ar

E
co
no
m
y

S
m
ug
gl
in
g

C
rim
e

Te
rr
or
is
m A
cc
id
en
ts

P
ro
te
st

M
ili
ta
ry

V
io
le
nc
e

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Dendogram for Topic Vectors: All countries

H
ei
gh
t

Support Vector Machines

I The support-vector machine (SVM) is the workhorse of
document classification and has proven to be highly robust
across a wide variety of domains.

I SVM partitions a high-dimensional space into two
categories while maximizing the distance between the cases
at the boundary

I SVM reduces the number of “close call” cases compared to
older reduction-of-dimensionality approaches such as
principle components and discriminant analysis

I Multi-category SVM is done by simply setting up a series
of dichotomous SVMs

I Open-source code is available in a variety of formats,
including C, Java, R and MatLab

Basic SVM

Source: http://www.dtreg.com/svm.htm

A fancier SVM

Source: http://www.epicentersoftware.com/genetrix/features/machine learning heuristics.htm

Applied SVM

Source: http://www.dtreg.com/svm.htm

Just one correspondence analysis graphic

since I think the method is cool...

Source:http://info.paiwhq.com/correspondence-analysis-what-does-it-all-mean/

Classification Trees

Classification Tree Example

Source: http://orange.biolab.si/doc/ofb/c otherclass.htm

Classification Tree Example

Source: http://orange.biolab.si/doc/ofb/c otherclass.htm

Classification Tree with Continuous Breakpoints

[this has something to do with classifying basalts]
Source: http://www.ucl.ac.uk/∼ucfbpve/papers/VermeeschGCA2006/W3441-rev37x.png

ID3 Algorithm

I Calculate the entropy of every attribute using the data set
S

I Split the set S into subsets using the attribute for which
entropy is minimum (or, equivalently, information gain is
maximum)

I Make a decision tree node containing that attribute

I Recurse on subsets using remaining attributes
Source: http://en.wikipedia.org/wiki/ID3 algorithm

Entropy: definition

Source: http://en.wikipedia.org/wiki/Entropy %28information theory%29

C4.5 Algorithm

C4.5 builds decision trees from a set of training data in the
same way as ID3, using the concept of information entropy. The
training data is a set S = s1, s2, ... of already classified samples.
Each sample si consists of a p-dimensional vector
(x1,i, x2,i, ..., xp,i) , where the xj represent attributes or features
of the sample, as well as the class in which si falls.
At each node of the tree, C4.5 chooses the attribute of the data
that most effectively splits its set of samples into subsets
enriched in one class or the other. The splitting criterion is the
normalized information gain (difference in entropy). The
attribute with the highest normalized information gain is
chosen to make the decision. The C4.5 algorithm then recurses
on the smaller sublists.
Source: http://en.wikipedia.org/wiki/C4.5 algorithm

C4.5 vs. ID3
C4.5 made a number of improvements to ID3. Some of these
are:

I Handling both continuous and discrete attributes: In order
to handle continuous attributes, C4.5 creates a threshold
and then splits the list into those whose attribute value is
above the threshold and those that are less than or equal
to it.

I Handling training data with missing attribute values—C4.5
allows attribute values to be marked as ? for missing.
Missing attribute values are simply not used in gain and
entropy calculations.

I Handling attributes with differing costs.

I Pruning trees after creation—C4.5 goes back through the
tree once it’s been created and attempts to remove
branches that do not help by replacing them with leaf
nodes

Source: http://en.wikipedia.org/wiki/C4.5 algorithm

Random ForestsTM : Breiman’s Algorithm

Each tree is constructed using the following algorithm:

1. Let the number of training cases be N, and the number of
variables in the classifier be M.

2. We are told the number m of input variables to be used to
determine the decision at a node of the tree; m should be much
less than M.

3. Choose a training set for this tree by choosing n times with
replacement from all N available training cases (i.e., take a
bootstrap sample). Use the rest of the cases to estimate the error
of the tree, by predicting their classes.

4. For each node of the tree, randomly choose m variables on which
to base the decision at that node. Calculate the best split based
on these m variables in the training set.

5. Each tree is fully grown and not pruned (as may be done in
constructing a normal tree classifier).

For prediction a new sample is pushed down the tree. It is assigned
the label of the training sample in the terminal node it ends up in.
This procedure is iterated over all trees in the ensemble, and the
mode vote of all trees is reported as the random forest prediction.
Source: http://en.wikipedia.org/wiki/Random forest

This sucker is trade-marked!

Random Forests(tm) is a trademark of Leo Breiman
and Adele Cutler and is licensed exclusively to Salford
Systems for the commercial release of the software.
Our trademarks also include RF(tm),
RandomForests(tm), RandomForest(tm) and Random
Forest(tm).

For details:
http://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm

Features of Random Forests

Breiman et al claim the following:
I It is unexcelled in accuracy among current algorithms.
I It runs efficiently on large data bases.
I It can handle thousands of input variables without variable deletion.
I It gives estimates of what variables are important in the classification.
I It generates an internal unbiased estimate of the generalization error as the

forest building progresses.
I It has an effective method for estimating missing data and maintains

accuracy when a large proportion of the data are missing.
I It has methods for balancing error in class population unbalanced data sets.
I Generated forests can be saved for future use on other data.
I Prototypes are computed that give information about the relation between

the variables and the classification.
I It computes proximities between pairs of cases that can be used in clustering,

locating outliers, or (by scaling) give interesting views of the data.
I The capabilities of the above can be extended to unlabeled data, leading to

unsupervised clustering, data views and outlier detection.
I It offers an experimental method for detecting variable interactions.

Random forestsTM may also cure acne, remove cat hair from upholstery and show
promise for bringing peace to the Middle East, though Breiman et al do not
explicitly make these claims.
Source: http://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm#features

Sequence models

General approach to sequence modeling

I Sequence is defined by a finite set of possible symbols

I Series of operations or rules for going between the symbols

I Applications
I Spell checking
I Parts of speech tagging
I Spoken language recognition
I Genomics: DNA and amino acid sequences
I Careers of political activists
I Transitions between authoritarianism and democracy

Levenshtein distance

I Distance between two strings/sequences is the operations
which combine to the minimum cost

I Insertion: vector of costs by symbol
I Deletion: vector of costs by symbol
I Substitution: matrix of costs by symbol x symbol

I This is computed using a relatively efficient dynamic
programming algorithm

I CRAN: ‘lwr’, ‘stringdist’

I http://en.wikipedia.org/wiki/Levenshtein distance

Levenshtein distance between “kitten” and “sitting”

1. kitten → sitten (substitution of ‘s’ for ‘k’)

2. sitten → sittin (substitution of ‘i’ for ‘e’)

3. sittin → sitting (insertion of ‘g’ at the end).

Hidden Markov Model - 1

I Markov assumption: transition between states of the
system are a function of only the current state and the
transition matrix

I Application: crisis phase

I States are not directly observed—hence “hidden”—but
each state is associated with a probability distribution of
the symbols generated by the system

I The transition matrix and probabilities are estimated using
the Baum-Welch expectation-maximization algorithm.
There are multiple packages on CRAN for this. Major
problem is local maxima in this estimation.

I Training is by example

Hidden Markov Model - 2

I The Viterbi algorithm can be used to establish the likely
sequence of states given an observed set of symbols

I Typical application is to match an observed set of symbols
to a series of models and then choose the models which had
the maximum probability

I These probabilities are proportional to the length of the
sequence, so it is difficult to compare fits sequences of
different lengths

An element of a left-right-left hidden Markov model

A left-right-left (LRL) hidden Markov Model

HMM probability map for Balkans

Conditional Random Fields

I In a CRF, each feature function is a function that takes in
as input:

I a sentence s
I the position i of a word in the sentence
I the label li of the current word
I the label li−1 of the previous word

I Each of these items is associated with a weight, which is
estimated. Information from additional locations in the
sequence can also be used.

I The CFR outputs a real-valued number (though the
numbers are often just either 0 or 1

Source: http://blog.echen.me/2012/01/03/introduction-to-conditional-
random-fields/

Conditional Random Fields

CRFs are basically the sequential version of logistic regression:
whereas logistic regression is a log-linear model for
classification, CRFs are a log-linear model for sequential labels.

This is more general than an HMM:

I CRFs can define a much larger set of features. HMMs are
necessarily local in nature, which force each word to depend
only on the current label and each label to depend only on
the previous label. CRFs can use more global features.

I CRFs can have arbitrary weights. Whereas an HMM uses
probabilities

Complications

I Sequences may not have a strict ordering when multiple
preconditions are running in parallel and can be completed
in any order

I Sequences tend to occur in ordinal rather than interval
time: are “non-events” important?

I The computational time for these methods tends to be
proportional to the sequence of the sequence length

Biological sequence comparison

I Massive public investment in North America and Europe
on “bioinformatics” tools over the past twenty years.

I Conveniently, versions of most of these are available on the
web

I Albeit the background databases have biological rather
than political sequences

I More “advanced” commercial versions are also available if
this approach pans out, but they are expensive

I There is some overlap between these and existing political
sequence analysis approaches, particularly HMMs and
CRFs

A convenient set of coincidences. . .

I DNA has four bases

I The standard CAMEO treatment of events uses four
primary categories; verbal/material conflict/cooperation

I Proteins are constructed of 20 amino acids

I CAMEO contains 20 cue categories

I Upshot (and, honest, this was coincidence): one could use
the existing DNA and protein sequence analysis software
without modification

Characteristics of bioinformatics sequence comparison
algorithms

I Provide a variety of comparison metrics involving fixed
sequences of a finite set of elements

I Assume random insertion/deletion/mutation of elements,
so sequences do not match perfectly

I Computationally efficient: some algorithms are designed for
use in databases involving millions of sequences

I Provide diagnostic tools of dealing with alignment issues:
many unknown sequences do not have a clear start and
finish

I Assume that irrelevant information is embedded in the
sequence, analogous to noise in event sequences

I Existing sites are generally designed to search against a
very large base of known DNA and protein sequences,
which we now have with GDELT

Problems that bioinformatics do not solve easily
I “Partial ordering” of event sequences—events within a day

are randomly ordered—has no analogy in biological
sequences

I Partial ordering problem is less of an issue if one is dealing
with aggregated events such as the ICEWS EOIs, since
these will almost never occur simultaneously.

I Biological sequences are related through evolutionary
change, which provides much closer and systematic
matches than those in event sequences

I Biological sequences probably have considerably less
variation, even across very different species, than event
sequences

I Though again, this is much less of an issue with macro
events

I Noise—non-coding introns—in biological sequences
generally occurs in chunks separating contiguous sequences
of coding elements

I “Non-coding” for political events would mostly be
situations where there is a “pause” in the crisis: an issue
but not a particularly difficult one;

I In some past research I’ve used “non-events”—typically 7
days without an interaction—as a discrete coded “event”.

Final thoughts and suggestions

Major lessons learned so far

Technical models and elite human forecasters,
developed by multiple research groups on a wide

variety of indicators, can forecast a variety of
indicators of political conflict at 6 to 24 month
horizons at around 80% out-of-sample accuracy.

This is 20% to 30% more accurate than typical
human forecasting.

Major lessons learned so far

Technical models and elite human forecasters,
developed by multiple research groups on a wide

variety of indicators, can forecast a variety of
indicators of political conflict at 6 to 24 month
horizons at around 80% out-of-sample accuracy.

This is 20% to 30% more accurate than typical
human forecasting.

Major lessons learned so far

I There are strong theoretical reasons to believe that error
cannot be reduced to zero, but there is no reason why it is
stabilizing at 80%

I Successful models are generally relatively simple

I Multiple methods generally converge to similar levels of
accuracy, though there are probably minor gains to be
made by refining these methods

I Ensemble methods are proving successful for both technical
and human forecasts

I Event-based and structural models are probably
substitutable at relatively short time frames

Some research frontiers that could be productive

I Statistical methods have been explored more thoroughly
than machine-learning methods

I Event-based prediction at short horizons—less than 3
months—is largely unexplored

I Sequence-based models are still largely unexplored, though
the existing work suggests they are at least credible

I Short-term trigger models may or may not be a hindsight
bias illusion: this needs additional work

I Real-time forecasting models are undeveloped, though this
is likely to change with the availability of GDELT and
other real-time data sets (e.g. new social media)

I At what time horizon and with what pattern do errors
occur in high density/long time-series datasets

Multi-Attribute Data Collected on Web (MADCOW)

RSS news
feeds

Data

Custom
Data Sets

Custom
Indicators

Actor
Dictionaries

Conflict
Indicators Event data

Political
Reports

Software

SVM
Classification

Subsetting
Tool

Event
Pattern Tool

Regime
Indicators

NER/
Detection

Web 2.0
input

 NLP Tools/
TABARI

Legend:

Open
access

databases

Visualization
Tools

Frame
Detection

Thank you

Email: schrodt735@gmail.com

Slides: http://eventdata.parusanalytics.com/presentations.html

Forecasting papers:
http://eventdata.parusanalytics.com/papers.html

	Overview
	Distinctions between statistical and machine learning approaches
	Software
	Clustering approaches
	K-Means

	Hierarchical Clustering: Dendograms
	Comparisons
	Generating Dendograms from LDA Topics
	Support Vector Machines

	Classification Trees
	Random Forests™

	Sequence models
	Levenshtein distance
	HMM
	CRF
	Additional comments on sequences

