
PLOVER:
A new framework for political event data

Philip A. Schrodt

Parus Analytics LLC and Open Event Data Alliance
Charlottesville, VA USA

http://philipschrodt.org

https://github.com/openeventdata/PLOVER

Paper presented at the
European Political Science Association meetings, Milan

22 June 2017

Event Data: Core Innovation

Once calibrated, monitoring and forecasting models based on
real-time event data can be run entirely without human
intervention

I Web-based news feeds provide a rich multi-source flow of
political information in real time

I Statistical models can be run and tested automatically, and
are 100% transparent

In other words, for the first time in human history—quite
literally—we have a system that can provide real-time measures
of political activity without any human intermediaries

Major phases of event data

I 1960s-70s: Original development by Charles McClelland
(WEIS; DARPA funding) and Edward Azar (COPDAB;
CIA funding?). Focus, then as now, is crisis forecasting.

I 1980s: Various human coding efforts, including Richard
Beale in National Security Council, unsuccessfully attempt
to get near-real-time coverage from major newspapers

I 1990s: KEDS (Kansas) automated coder; PANDA project
(Harvard) extends ontologies to sub-state actions; shift to
wire service data

I early 2000s: TABARI and VRA second-generation
automated coders

I 2007-2011: DARPA ICEWS

I 2012-present: full-parsing coders from near-real-time
web-based news sources: PETRARCH and ACCENT

Development of event ontologies

1970s: WEIS, COPDAB, CREON and others

1980s: BCOW (Leng) (crisis data: 300 categories)

1990s: PANDA (Bond): first ontology to focus on
substate actors

2000s: IDEA (Bond, VRA): backward compatible with
multiple existing ontologies, adds non-political
events such as disaster and disease

2000s: CAMEO (Gerner and Schrodt): combines
ambiguous WEIS categories, expands violence and
mediation-related categories; implemented as
15,000-phrase TABARI dictionary

late 2010s: PLOVER: generalized political coding scheme and
data interchange specification

WEIS primary categories (ca. 1965)

CAMEO

I 20 primary event categories; around 200 subcategories

I Based on the WEIS typology but with greater detail on
violence and mediation

I Combines ambiguous WEIS categories such as
[WARN/THREATEN] and [GRANT/PROMISE]

I National actor codes based on ISO-3166 and
CountryInfo.txt

I Substate “agents” such as GOV, MIL, REB, BUS

I Extensive IGO/NGO list

Open Event Data Alliance

I Institutionalize event data following the model of CRAN
and many other decentralized open collaborative research
groups: these turn out to be common in most research
communities

I Provide at least one source of daily updates with 24/7/365
data reliability. Ideally, multiple such data sets rather than
“one data set to rule them all”

I Establish common standards, formats, and best practices

I Open source, open collaboration, open access

PLOVER objectives

I Only the 2-digit event “cue categories” have been retained from
CAMEO. These are defined in greater detail than they were in WEIS
and CAMEO.

I Some additional consolidation of CAMEO codes, and a new category
for criminal behavior

I Standard optional fields have been defined for some categories, and
the “target” is optional in some categories.

I A set of standardized names (“fields”) for JSON
(http://www.json.org/) records are specified for both the core event
data fields and for extended information such as geolocation and
extracted texts;

I We have converted all of the examples in the CAMEO manual to an
initial set of English-language “gold standard records” for validation
purposes—these files are at
https://github.com/openeventdata/PLOVER/blob/master/PLOVER_
GSR_CAMEO.txt—and we expect to both expand this corpus and
extend it to at least Spanish and Arabic cases.

http://www.json.org/
https://github.com/openeventdata/PLOVER/blob/master/PLOVER_GSR_CAMEO.txt
https://github.com/openeventdata/PLOVER/blob/master/PLOVER_GSR_CAMEO.txt

Event, Mode, and Context

Most of the detail found in the 3- and 4-digit categories of CAMEO is now
found in the mode and context fields in PLOVER. More generally,
PLOVER takes the general purpose “events” of CAMEO (as well as the
earlier WEIS, IDEA and COPDAB ontologies) and splits these into
“event−mode− context” which generally corresponds to
“what− how − why.” We anticipate at least four advantages to this:

1. The “what− how − why”components are now distinct, whereas
various CAMEO subcategories inconsistently used the how and why
to distinguish between subcategories.

2. We are probably increasing the ability of automated classifiers—as
distinct from parser/coders—to assign mode and context compared to
their ability to assign subcategories.

3. In initial experiments, it appears this approach is much easier for
humans to code than the hierarchical structure of CAMEO because a
human coder can hold most of the relevant categories in working
memory (well, that and a few tables easily displayed on a screen)

4. Because the words used in differentiate mode and context are
generally very basic, translations of the coding protocols into
languages other than English is likely to be easier than translating the
subcategory descriptions found in CAMEO.

PLOVER: ASSAULT modes

Name Content
beat physically assault
torture torture
execute judicially-sanctioned execution
sexual sexual violence
assassinate targeted assassinations with any weapon
primitive primitive weapons: fire, edged weapons, rocks, farm implements
firearms rifles, pistols, light machine guns
explosives any explosive not incorporated in a heavy weapon: mines, IEDS, car bombs
suicide-attack individual and vehicular suicide attacks
heavy-weapons crew-served weapons
other other modes

Adapted from Political Instability Task Force Atrocities Database:
http://eventdata.parusanalytics.com/data.dir/atrocities.html

http://eventdata.parusanalytics.com/data.dir/atrocities.html

PLOVER: general contexts

Name Content
political political contexts not covered by any of the more specific

categories below
military military, including military assistance
economic trade, finance and economic development
diplomatic diplomacy
resource territory and natural resources
culture cultural and educational exchange
disease disease outbreaks and epidemics
disaster natural disaster
refugee refugees and forced migration
legal national and international law, including human rights
terrorism terrorism
government governmental issues other than elections and legislative
election elections and campaigns
legislative legislative debate, parliamentary coalition formation
cbrn chemical, biological, radiation, and nuclear attacks
cyber cyber attacks and crime
historical event is historical
hypothetical event is hypothetical

PLOVER output

Event data coding programs

I TABARI: C/C++ using internal shallow parsing.
http://eventdata.parusanalytics.com/software.dir/tabari.html

I JABARI: Java version of TABARI with additional
enhancements: alas, abandoned and lost following end of
ICEWS research phase

I DARPA ICEWS: Raytheon/BBN ACCENT coder can now
be licensed for academic research use

I Open Event Data Alliance: PETRARCH 1/2 coders,
Moredcai geolocation system.
https://github.com/openeventdata

I NSF RIDIR: developing open-source native-language
coders and dictionaries for English, Spanish and Arabic

“CAMEO-World” across coders and news sources

Between-category variance is massively greater than the
between-coder variance.

Why the convergence?

I This is simply how news is covered (human-coded WEIS
data also looked similar)

I The diversity in the language and formatting of stories
means no automated coding system can get all of them

I Major differences (PETRARCH-2 on 03; ACCENT on 06,
18) are due to redefinitions or intense dictionary
development

I Systems probably have comparable performance on
avoiding non-events (95% agreement for PETRARCH 1
and 2)

I Note these are aggregate proportions: ACCENT probably
has a higher recall rate, but the otherwise pattern is still
the same

So. . .

Universal dependencies

Dependency parse: input

Dependency parse: locate subject

Dependency parse: locate verb

Dependency parse: locate direct object

Dependency parse: locate actor phrases

Dependency parse: locate phrases linked by conjunction

Main event coding: mudflat
def get_NP(sdex):

""" construct noun phrase based on word at sdex """

index = int(sdex) - 1

subjstrg = plist[index][1]

for li in reversed(plist[:index]):

if li[6] == sdex and li[7] in ["compound", "amod"]:

subjstrg = li[1] + ’ ’ + subjstrg

for li in plist[index + 1:]: # do we ever hit this?

if li[6] == sdex and li[7] in ["compound", "amod"]:

subjstrg = subjstrg + ’ ’ + li[1]

return subjstrg

def get_conj(sdex):

""" check if there are compound elements: this can be reduced to a, well, reduce """

actlist = [sdex]

for li in plist:

if li[6] == sdex and li[7] == "conj":

actlist.append(li[0])

return actlist

def code_events():

<same initialization code>

for li in plist:

if "nsubj" == li[7]:

srclist = get_conj(li[0])

iroot = int(li[6])

rootcode = plist[iroot - 1][2].upper() # adjust for zero indexing

roottext = plist[iroot - 1][1]

tarlist = []

for lobj in plist:

if lobj[7] == "dobj" and lobj[6] == li[6]:

tarlist = get_conj(lobj[0])

if tarlist: break

Main event coding: mudflat

def get_NP(sdex):

""" construct noun phrase based on word at sdex """

index = int(sdex) - 1

return ’ ’.join(reversed(

[li[1] for li in reversed(plist[:index]) if li[6] == sdex and li[7] in ["compound", "amod"]]

)) + ’ ’ + plist[index][1] + ’ ’ + \

’ ’.join([li[1] for li in plist[index + 1:] if li[6] == sdex and li[7] in ["compound", "amod"]])

def get_conj(sdex):

""" check if there are compound elements """

return [sdex] + [li[0] for li in plist if li[6] == sdex and li[7] == "conj"]

def code_events():

""" main coding loop """

srctext, srccode, srcseccode, srclist = [], [], [], []

tartext, tarcode, tarseccode, tarlist = [], [], [], []

roottext, rootcode = "", ""

for li in plist:

if "nsubj" == li[7]:

srclist = get_conj(li[0])

iroot = int(li[6])

rootcode = plist[iroot - 1][2].upper() # adjust for zero indexing

roottext = plist[iroot - 1][1]

tarlist = []

for lobj in plist:

if lobj[7] == "dobj" and lobj[6] == li[6]:

tarlist = get_conj(lobj[0])

if tarlist: break

Thank you

Email:
schrodt735@gmail.com

Slides:
http://eventdata.parusanalytics.com/presentations.html

Links to data and software:
https://github.com/openeventdata/PLOVER

